OFFSET
1,2
COMMENTS
According to a theorem proven by Shiu (2016), a(n) exists for all n.
LINKS
Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
EXAMPLE
-- ---------- -------- --------------------------
1 1 1 1 = 1 * 1
2 3 6 3 = 3 * 1
3 5 20 15 = 5 * 3
4 7 42 77 = 7 * 11
5 11 33 11 = 11 * 1
6 13 156 13 = 13 * 1
7 15 20 15 = 15 * 1
8 17 272 17 = 17 * 1
9 19 342 931 = 19 * 49
10 21 2058 1911 = 21 * 91
11 23 506 1725 = 23 * 75
12 29 377 319 = 29 * 11
13 31 930 3751 = 31 * 121
14 33 77 33 = 33 * 1
15 35 14406 2430488445 = 35 * 69442527
16 37 629 20313 = 37 * 549
17 39 162 39 = 39 * 1
18 41 1640 6519 = 41 * 159
19 43 559 645 = 43 * 15
20 47 2162 12831 = 47 * 273
21 51 4624 9537 = 51 * 187
22 53 1166 53 = 53 * 1
23 55 110 55 = 55 * 1
24 57 6498 419498967 = 57 * 7359631
25 59 3422 6431 = 59 * 109
26 61 610 41175 = 61 * 675
27 65 342732 974285 = 65 * 14989
28 67 4422 2211 = 67 * 33
29 69 506 1725 = 69 * 25
30 71 4970 2343 = 71 * 33
31 73 5256 7227 = 73 * 99
32 77 42 77 = 77 * 1
33 79 6162 91801713 = 79 * 1162047
34 83 6806 1200097 = 83 * 14459
MATHEMATICA
max = 64; osf = Select[Range[1, 64, 2], SquareFreeQ]; m = Length[osf]; c = 0; s = Table[0, {m}]; h = 0; lcm = 1; n = 1; While[c < m, h += 1/n; lcm = LCM[lcm, n]; r = lcm/Denominator[h]; Do[If[s[[k]] == 0 && Divisible[r, osf[[k]]], c++; s[[k]] = n], {k, 1, m}]; n++]; s
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jan 29 2021
STATUS
approved