The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332334 Let a(1) = a(2) = 1, and for n > 2 let a(n) = p where p is the largest prime such that p# divides phi(n), where phi is Euler's totient function and # is the primorial. 0
 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 5, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 5, 5, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 5, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Pollack and Pomerance show that the normal order of a(n) is log log n/log log log n. The maximal order is log n (for primorial primes A018239, by the prime number theorem) and the minimal order, for n > 2, is 2 (for products of Fermat primes A143512, apart from 1). LINKS Paul Pollack and Carl Pomerance, Phi, primorials, and Poisson, arXiv:2001.06727 [math.NT], 2020. PROG (PARI) a(n)=my(ph=eulerphi(n)); my(p=1); forprime(q=2, , if(ph%q, return(p), p=q)) CROSSREFS Cf. A018239, A143512. Sequence in context: A338094 A165035 A236531 * A217403 A081309 A329377 Adjacent sequences:  A332331 A332332 A332333 * A332335 A332336 A332337 KEYWORD nonn AUTHOR Charles R Greathouse IV, Feb 09 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 17:33 EDT 2021. Contains 347716 sequences. (Running on oeis4.)