login
A143512
Numbers of the form 3^a * 5^b * 17^c * 257^d * 65537^e; products of Fermat primes.
7
1, 3, 5, 9, 15, 17, 25, 27, 45, 51, 75, 81, 85, 125, 135, 153, 225, 243, 255, 257, 289, 375, 405, 425, 459, 625, 675, 729, 765, 771, 867, 1125, 1215, 1275, 1285, 1377, 1445, 1875, 2025, 2125, 2187, 2295, 2313, 2601, 3125, 3375, 3645, 3825, 3855, 4131, 4335, 4369
OFFSET
1,2
COMMENTS
Similar to A004729, which allows each Fermat prime to occur 0 or 1 times. Applying Euler's phi function to these numbers produces numbers in A143513.
If the well-known conjecture that there are only five prime Fermat numbers F_k = 2^(2^k) + 1, k=0,1,2,3,4, is true, then we have exactly Sum_{n>=1} 1/a(n) = Product_{k=0..4} F_k/(F_k-1) = 4294967295/2147483648 = 1.9999999995343387126922607421875. - Vladimir Shevelev and T. D. Noe, Dec 01 2010
MATHEMATICA
nn=60; logs=Log[2., {3, 5, 17, 257, 65537}]; lim=Floor[nn/logs]; t={}; Do[z={i, j, k, l, m}.logs; If[z<nn, AppendTo[t, Round[2.^z]]], {i, 0, lim[[1]]}, {j, 0, lim[[2]]}, {k, 0, lim[[3]]}, {l, 0, lim[[4]]}, {m, 0, lim[[5]]}]; t=Sort[t]
CROSSREFS
Sequence in context: A129771 A209837 A093688 * A174688 A339345 A111249
KEYWORD
nonn
AUTHOR
T. D. Noe, Aug 21 2008
STATUS
approved