The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086435 Maximum number of parts possible in a factorization of n into a product of distinct numbers > 1. 7
 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS For n>1, a((n+1)!) = n is the first occurrence of n in the sequence. This function depends only on the prime signature of n. - Franklin T. Adams-Watters, Dec 19 2006 For integer n and prime p not dividing n, a(n*p) = a(n) + 1. - Max Alekseyev, Apr 23 2010 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, UnorderedFactorization EXAMPLE a(6)=2 since 6 may be factored into distinct parts as {{2,3},{6}}, so the largest number of factors possible is 2. a(8)=2 since 8 may be factored into distinct parts as {{8},{2,4}}, so the largest numbers of factors possible is 2. PROG (PARI) { a(n, m=1) = if(n>m, 1 + vecmax( apply( x->if(x>m, a(n/x, x)), divisors(n) ))) } \\ Max Alekseyev, Jul 16 2009 (PARI) { aopt(n) = local(f, t); f=factor(n)[, 2]; t=select(x->x>1, f); a(prod(j=1, #t, prime(j)^t[j])) + #f - #t } /* optimized version */ \\ Max Alekseyev, Apr 23 2010 CROSSREFS Cf. A000142, A025487. Sequence in context: A345935 A214715 A244145 * A266226 A099305 A334461 Adjacent sequences: A086432 A086433 A086434 * A086436 A086437 A086438 KEYWORD nonn AUTHOR Eric W. Weisstein, Jul 19 2003 EXTENSIONS More terms from Max Alekseyev, Apr 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 2 13:43 EST 2023. Contains 360021 sequences. (Running on oeis4.)