login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A375272
The number of factors of n of the form p^Fibonacci(k), where p is a prime and k >= 2, when the factorization is uniquely done using the dual Zeckendorf representation of the exponents in the prime factorization of n.
2
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2
OFFSET
1,6
COMMENTS
First differs from A086435 at n = 36. Differs from A266226 at n = 1, 36, ... .
The number of dual-Zeckendorf-infinitary divisors of n (defined in A331109) that are prime powers (A246655).
a(n) depends only on the prime signature of n.
Analogous to A064547 (binary representation) and A318464 (Zeckendorf representation).
LINKS
FORMULA
Additive with a(p^e) = A112310(e).
a(n) = log_2(A331109(n)).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=2} (A112310(k)-A112310(k-1)) * P(k) = 0.18790467121403662496..., and P(s) is the prime zeta function.
EXAMPLE
For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3) = 1 + 2. Therefore 8 = 2^(1+2) = 2^1 * 2^2, and a(8) = 2.
For n = 256 = 2^8, the dual Zeckendorf representation of 8 is 1011, i.e., 8 = Fibonacci(2) + Fibonacci(3) + Fibonacci(5) = 1 + 2 + 5. Therefore 256 = 2^(1+2+5) = 2^1 * 2^2 * 2^5, and a(256) = 3.
MATHEMATICA
toDualZeck[n_] := Module[{s = 0, v = 0, i = 0, f}, While[s < n, s += Fibonacci[i + 2]; v += 2^i; i++]; i--; While[i >= 0, f = Fibonacci[i + 2]; If[s - f >= n, s -= f; v -= 2^i]; i--]; v]; (* A003754, after Rémy Sigrist's PARI code in A112309 *)
f[p_, e_] := DigitCount[toDualZeck[e], 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) todualzeck(n) = {my (s=0, v=0); for (i=0, oo, if (s>=n, forstep (j=i-1, 0, -1, if (s-fibonacci(2+j)>=n, s-=fibonacci(2+j); v-=2^j; ); ); return (v); ); s+=fibonacci(2+i); v+=2^i; ); } \\ A003754, Rémy Sigrist's code in A112309
a(n) = vecsum(apply(x -> hammingweight(todualzeck(x)), factor(n)[, 2]));
KEYWORD
nonn,easy,base
AUTHOR
Amiram Eldar, Aug 09 2024
STATUS
approved