login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375271
Partial products of A375270.
3
1, 2, 6, 30, 210, 1680, 18480, 240240, 4084080, 77597520, 1784742960, 48188059920, 1397453737680, 43321065868080, 1602879437118960, 65718056921877360, 2825876447640726480, 132816193039114144560, 7039258231073049661680, 415316235633309930039120, 25334290373631905732386320
OFFSET
1,2
COMMENTS
Numbers with a record number of Zeckendorf-infinitary divisors (A318465). Also, indices of records in A318464.
a(n) is the least number k such that A318464(k) = n-1 and A318465(k) = 2^(n-1).
LINKS
FORMULA
a(n) = Product_{k=1..n} A375270(k).
EXAMPLE
A375270 begins with 1, 2, 3, 5, ..., so, a(1) = 1, a(2) = 1 * 2 = 2, a(3) = 1 * 2 * 3 = 6, a(4) = 1 * 2 * 3 * 5 = 30.
MATHEMATICA
fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k += 2; f = Fibonacci[k]]; s];
seq[max_] := Module[{s = {}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; FoldList[Times, 1, Sort[s]]]; seq[100]
PROG
(PARI) fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k += 2; f = fibonacci(k)); Vec(s); }
lista(pmax) = {my(s = [1], p = 2, e = 1, f = [], r = 1); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); s = vecsort(s); for(i = 1, #s, r *= s[i]; print1(r, ", "))}
CROSSREFS
Cf. A037992 (analogous with "Fermi-Dirac primes", A050376), A318464, A318465, A375270.
Subsequence of A025487.
Sequence in context: A372741 A118747 A377707 * A129779 A068215 A305400
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 09 2024
STATUS
approved