login
A058061
Number of prime factors (counted with multiplicity) of d(n), the number of divisors of n.
10
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 3, 3
OFFSET
1,6
COMMENTS
From Bernard Schott, Mar 24 2020: (Start)
a(n) = 1 iff n = p^(q-1) with p, q primes (A009087).
a(n) = 2 if n=p*q with p, q primes (A006881), or if n=p^2*q with p, q primes (A054753), or if n=p^4*q with p, q primes (A178739), or if n=p^6*q with p, q primes (A189987), or if n=p^2*q^4 with p, q primes (A189988), or if n=p^(m-1) with p prime and m is semiprime in A001358 (not exhaustive). (End)
LINKS
FORMULA
a(n) = A001222(A000005(n)).
Additive with a(p^e) = A001222(e+1). - Amiram Eldar, Jan 15 2024
EXAMPLE
For n=120, d(120)=16, a(120)=4.
MATHEMATICA
Table[PrimeOmega@ DivisorSigma[0, n], {n, 120}] (* Michael De Vlieger, Feb 18 2017 *)
PROG
(PARI) a(n) = bigomega(numdiv(n)); \\ Michel Marcus, Dec 14 2013
CROSSREFS
Cf. A001222, A000005, A058060, A079057 (partial sums).
Sequence in context: A160980 A065031 A305832 * A376886 A371090 A064547
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 23 2000
STATUS
approved