OFFSET
1,6
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.
EXAMPLE
Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
MATHEMATICA
FDfactor[n_]:=If[n===1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>1]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
nn=100; FDprimeList=Array[FDfactor, nn, 1, Union]; FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]], {n, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 10 2018
STATUS
approved