login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305832 Number of connected components of the n-th FDH set-system. 3
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.
LINKS
EXAMPLE
Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
MATHEMATICA
FDfactor[n_]:=If[n===1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>1]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
nn=100; FDprimeList=Array[FDfactor, nn, 1, Union]; FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]], {n, nn}]
CROSSREFS
Sequence in context: A161276 A160980 A065031 * A058061 A371090 A064547
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 10 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:23 EDT 2024. Contains 371661 sequences. (Running on oeis4.)