login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058055
a(n) is the smallest positive number m such that m^2 + n is the next prime > m^2.
5
1, 3, 8, 5, 12, 11, 18, 51, 82, 49, 234, 23, 42, 75, 86, 231, 174, 107, 288, 63, 80, 69, 102, 325, 166, 765, 128, 143, 822, 727, 276, 597, 226, 835, 702, 461, 254, 693, 592, 797, 1284, 349, 370, 2337, 596, 645, 3012, 1033, 590, 4083, 1490, 757, 882, 833, 1668
OFFSET
1,2
COMMENTS
The primes are in A058056.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..500 (first 400 terms from T. D. Noe)
FORMULA
a(n) = Min{ m > 0 | m^2 + n is the next prime after m^2}.
A053000(a(n)) = n. - Zak Seidov, Apr 12 2013
EXAMPLE
n=6: a(6)=11 and 11^2+6 is 127, a prime; n=97: a(97) = 2144 and 2144^2+97 = 4596833, the least prime of the form m^2+97.
MAPLE
for m from 1 to 10^5 do
r:= nextprime(m^2)-m^2;
if not assigned(R[r]) then R[r]:= m end if;
end do:
J:= map(op, {indices(R)}):
N:= min({$1..J[-1]} minus J)-1:
[seq(R[j], j=1..N)]; # Robert Israel, Aug 10 2012
MATHEMATICA
nn = 100; t = Table[0, {nn}]; found = 0; m = 0; While[found < nn, m++; k = NextPrime[m^2] - m^2; If[k <= nn && t[[k]] == 0, t[[k]] = m; found++]]; t (* T. D. Noe, Aug 10 2012 *)
PROG
(Sage)
R = {} # After Robert Israel's Maple script.
for m in (1..2^12) :
r = next_prime(m^2) - m^2
if r not in R : R[r] = m
L = sorted(R.keys())
for i in (1..len(L)-1) :
if L[i] != L[i-1]+1 : break
[R[k] for k in (1..i)] # Peter Luschny, Aug 11 2012
CROSSREFS
See A085099, A215249 for other versions.
Sequence in context: A323707 A291186 A347942 * A229598 A078356 A050093
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 20 2000
EXTENSIONS
Definition corrected by Zak Seidov, Mar 03 2008, and again by Franklin T. Adams-Watters, Aug 10 2012
STATUS
approved