login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053000
a(n) = (smallest prime > n^2) - n^2.
20
2, 1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 6, 5, 4, 1, 2, 1, 4, 7, 6, 1, 2, 3, 12, 1, 6, 1, 4, 3, 12, 7, 6, 7, 2, 7, 4, 1, 4, 3, 2, 1, 12, 13, 12, 13, 2, 13, 4, 5, 10, 3, 8, 3, 10, 1, 12, 1, 2, 7, 10, 7, 6, 3, 20, 3, 4, 1, 4, 13, 22, 3, 10, 5, 4, 1, 14, 3, 10, 5, 6, 21, 2, 9, 10, 1, 4, 15, 4, 9, 6, 1, 6, 3, 14
OFFSET
0,1
COMMENTS
Suggested by Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2.
Record values are listed in A070317, their indices in A070316. - M. F. Hasler, Mar 23 2013
Conjecture: a(n) <= 1+phi(n) = 1+A000010(n), for n>0. This improves on Oppermann's conjecture, which says a(n) < n. - Jianglin Luo, Sep 22 2023
REFERENCES
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
R. K. Guy, Unsolved Problems in Number Theory, Section A1.
FORMULA
a(n) = A013632(n^2). - Robert Israel, Jul 06 2015
MAPLE
A053000 := n->nextprime(n^2)-n^2;
MATHEMATICA
nxt[n_]:=Module[{n2=n^2}, NextPrime[n2]-n2]
nxt/@Range[0, 100] (* Harvey P. Dale, Dec 20 2010 *)
PROG
(PARI) A053000(n)=nextprime(n^2)-n^2 \\ M. F. Hasler, Mar 23 2013
(Magma) [NextPrime(n^2) - n^2: n in [0..100]]; // Vincenzo Librandi, Jul 06 2015
(Python)
from sympy import nextprime
def a(n): nn = n*n; return nextprime(nn) - nn
print([a(n) for n in range(94)]) # Michael S. Branicky, Feb 17 2022
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Feb 21 2000
EXTENSIONS
More terms from James A. Sellers, Feb 22 2000
STATUS
approved