OFFSET
1,2
COMMENTS
This sequence has connections with A297845.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
FORMULA
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+-----------------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1
2| 2 2 2 2 2 2 2 2 2 2
3| 1 2 3 4 5 6 7 8 9 10
4| 4 4 4 4 4 4 4 4 4 4
5| 1 2 5 16 11 90 17 512 625 550
6| 2 4 6 8 10 12 14 16 18 20
7| 1 2 7 256 17 47250 29 134217728 5764801 5656750
8| 8 8 8 8 8 8 8 8 8 8
9| 1 4 9 16 25 36 49 64 81 100
10| 2 4 10 32 22 180 34 1024 1250 1100
The corresponding polynomials are:
f(n)\f(k)| 0 1 x 2 x^2 x+1 x^3 3 2*x x^2+1
---------+---------------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1
x| 0 1 x 2 x^2 x+1 x^3 3 2*x x^2+1
2| 2 2 2 2 2 2 2 2 2 2
x^2| 0 1 x^2 4 x^4 x^2+2*x+1 x^6 9 4*x^2 x^4+2*x^2+1
x+1| 1 2 x+1 3 x^2+1 x+2 x^3+1 4 2*x+1 x^2+2
x^3| 0 1 x^3 8 x^6 x^3+3*x^2+3*x+1 x^9 27 8*x^3 x^6+3*x^4+3*x^2+1
3| 3 3 3 3 3 3 3 3 3 3
2*x| 0 2 2*x 4 2*x^2 2*x+2 2*x^3 6 4*x 2*x^2+2
x^2+1| 1 2 x^2+1 5 x^4+1 x^2+2*x+2 x^6+1 10 4*x^2+1 x^4+2*x^2+2
PROG
(PARI) g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1))
f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i, 2] * v^(primepi(f[i, 1]) - 1))
T(n, k) = g(f(n, f(k)))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Jul 02 2019
STATUS
approved