login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326376
Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: for any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) o f(k)) (where o denotes function composition).
2
1, 2, 1, 1, 2, 1, 4, 2, 2, 1, 1, 4, 3, 2, 1, 2, 2, 4, 4, 2, 1, 1, 4, 5, 4, 5, 2, 1, 8, 2, 6, 16, 4, 6, 2, 1, 1, 8, 7, 8, 11, 4, 7, 2, 1, 2, 4, 8, 256, 10, 90, 4, 8, 2, 1, 1, 4, 9, 8, 17, 12, 17, 4, 9, 2, 1, 4, 2, 10, 16, 8, 47250, 14, 512, 4, 10, 2, 1, 1, 8
OFFSET
1,2
COMMENTS
This sequence has connections with A297845.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
FORMULA
For any m, n, k > 0 and any i >= 0:
- T(1, k) = 1,
- T(2^i, k) = 2^i,
- T(3, k) = k,
- T(3^i, k) = k^i,
- T(5, k) = A297473(k),
- T(6, k) = 2*k,
- T(n, 1) = A006519(n),
- T(n, 2) = A061142(n),
- T(n, 3) = n,
- T(n, 5) = A319525(n),
- T(m*n, k) = T(m, k) * T(n, k).
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+-----------------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1
2| 2 2 2 2 2 2 2 2 2 2
3| 1 2 3 4 5 6 7 8 9 10
4| 4 4 4 4 4 4 4 4 4 4
5| 1 2 5 16 11 90 17 512 625 550
6| 2 4 6 8 10 12 14 16 18 20
7| 1 2 7 256 17 47250 29 134217728 5764801 5656750
8| 8 8 8 8 8 8 8 8 8 8
9| 1 4 9 16 25 36 49 64 81 100
10| 2 4 10 32 22 180 34 1024 1250 1100
The corresponding polynomials are:
f(n)\f(k)| 0 1 x 2 x^2 x+1 x^3 3 2*x x^2+1
---------+---------------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1
x| 0 1 x 2 x^2 x+1 x^3 3 2*x x^2+1
2| 2 2 2 2 2 2 2 2 2 2
x^2| 0 1 x^2 4 x^4 x^2+2*x+1 x^6 9 4*x^2 x^4+2*x^2+1
x+1| 1 2 x+1 3 x^2+1 x+2 x^3+1 4 2*x+1 x^2+2
x^3| 0 1 x^3 8 x^6 x^3+3*x^2+3*x+1 x^9 27 8*x^3 x^6+3*x^4+3*x^2+1
3| 3 3 3 3 3 3 3 3 3 3
2*x| 0 2 2*x 4 2*x^2 2*x+2 2*x^3 6 4*x 2*x^2+2
x^2+1| 1 2 x^2+1 5 x^4+1 x^2+2*x+2 x^6+1 10 4*x^2+1 x^4+2*x^2+2
PROG
(PARI) g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1))
f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i, 2] * v^(primepi(f[i, 1]) - 1))
T(n, k) = g(f(n, f(k)))
CROSSREFS
See A326377 for the main diagonal of T.
Sequence in context: A082506 A053000 A002070 * A106052 A050473 A057593
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Jul 02 2019
STATUS
approved