OFFSET
2,3
COMMENTS
From Wolfdieter Lang, Sep 04 2017: (Start)
i) If gcd(n, k) = 1 then imin = imin(n, k) = 0 and the length of the period P = T(n, k) = order(n, k), given in A216327 corresponding to the numbers of A038566. This is due to Euler's theorem. E.g., T(4, 3) = 2 because A216327(4, 2) = 2 corresponding to A038566(4, 2) = 3.
ii) If gcd(n, k) is not 1 then the smallest nonnegative index imin = imin(n, k) is obtained from A290601 with the corresponding length of the period given in A290602. Also in this case the sequence always becomes periodic, because one of the possible values from {0, 1, ..., n-1} has to appear a second time because the sequence has more than n entries. Example: T(4, 2) = 1 because imin is given by A290601(1, 1) = 2 (corresponding to the present n = 4, k = 2 values) with the length of the period P given by A290602(1, 1) = 1. (End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..19901 (rows 2 <= n <= 200).
EXAMPLE
If n=7, k=2, (imin = 0) the sequence is 1,2,4,1,2,4,1,2,4,... of period 3, so T(7,2) = 3. The triangle T(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
2: 1
3: 1 2
4: 1 1 2
5: 1 4 4 2
6: 1 2 1 1 2
7: 1 3 6 3 6 2
8: 1 1 2 1 2 1 2
9: 1 6 1 3 6 1 3 2
10: 1 4 4 2 1 1 4 4 2
11: 1 10 5 5 5 10 10 10 5 2
12: 1 2 2 1 2 1 2 2 1 1 2
13: 1 12 3 6 4 12 12 4 3 6 12 2
14: 1 3 6 3 6 2 1 1 3 6 3 6 2
15: 1 4 4 2 2 1 4 4 2 1 2 4 4 2
16: 1 1 4 1 4 1 2 1 2 1 4 1 4 1 2
17: 1 8 16 4 16 16 16 8 8 16 16 16 4 16 8 2
18: 1 6 1 3 6 1 3 2 1 1 6 1 3 6 1 1 2
... Reformatted and extended. - Wolfdieter Lang, Sep 04 2017
From Wolfdieter Lang, Sep 04 2017: (Start)
The table imin(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
2: 0
3: 0 0
4: 0 2 0
5: 0 0 0 0
6: 0 1 1 1 0
7: 0 0 0 0 0 0
8: 0 3 0 2 0 3 0
9: 0 0 2 0 0 2 0 0
10: 0 1 0 1 1 1 0 1 0
11: 0 0 0 0 0 0 0 0 0 0
12: 0 2 1 1 0 2 0 1 1 2 0
13: 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 1 0 1 0 1 1 1 0 1 0 1 0
15: 0 0 1 0 1 1 0 0 1 1 0 1 0 0
16: 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0
17: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18: 0 1 2 1 0 2 0 1 1 1 0 2 0 1 2 1 0
... (End)
MATHEMATICA
period[lst_] := Module[{n, i, j}, n=Length[lst]; For[j=2, j <= n, j++, For[i=1, i<j, i++, If[lst[[i]] == lst[[j]], Return[{i-1, j-i}]]]]; Return[{0, 0}]]; T[n_, k_] := Module[{t, p}, t=Table[PowerMod[k, i, n], {i, 0, 2n}]; p=period[t][[2]]; p]; Table[T[n, k], {n, 2, 14}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
CROSSREFS
KEYWORD
AUTHOR
Gottfried Helms, Oct 05 2000
EXTENSIONS
Constraint on k changed from 2 <= k <= n to 1 <= k < n, based on comment from Franklin T. Adams-Watters, Jan 19 2006, by David Applegate, Mar 11 2014
Name changed and table extended by Wolfdieter Lang, Sep 04 2017
STATUS
approved