login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057595
Triangle T(n,k) giving 2*p mod n-1, where p = period of sequence k^i (i=0,1,2,...) mod n (n >= 2, 2<=k<=n).
2
0, 0, 0, 2, 1, 2, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 6, 4, 2, 6, 4, 2, 8, 8, 4, 2, 2, 8, 8, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 4, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 0, 6, 0, 8, 0, 0, 8, 6, 0, 0, 4, 2
OFFSET
2,4
EXAMPLE
0; 0,0; 2,1,2; 0,0,0,2; ...
MATHEMATICA
period[lst_] := Module[{n, i, j}, n = Length[lst]; For[j = 2, j <= n, j++, For[i = 1, i < j, i++, If[lst[[i]] == lst[[j]], Return[{i - 1, j - i}]]]]; Return[{0, 0}]]; T[n_, k_] := Module[{t, p}, t = Table[PowerMod[k, i, n], {i, 0, 2 n}]; p = period[t][[2]]; Mod[2 p, n - 1]]; Table[T[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
CROSSREFS
Sequence in context: A050602 A065040 A284688 * A035201 A035179 A035161
KEYWORD
nonn,tabl,nice
AUTHOR
Gottfried Helms, Oct 05 2000
STATUS
approved