login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323707
a(n) = denominator of Sum_{d|n} tau(d)/pod(d) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).
1
1, 1, 3, 8, 5, 9, 7, 16, 9, 25, 11, 32, 13, 49, 225, 1024, 17, 972, 19, 4000, 441, 121, 23, 41472, 125, 169, 729, 10976, 29, 101250, 31, 16384, 1089, 289, 1225, 1119744, 37, 361, 1521, 320000, 41, 388962, 43, 42592, 30375, 529, 47, 127401984, 343, 62500, 2601
OFFSET
1,3
COMMENTS
Sum_{d|n} tau(d)/pod(d) > 1 for all n > 1.
FORMULA
a(n) = 1 for n = 1, 2, ... (no other n <= 5*10^6).
a(p) = p for prime p > 2.
EXAMPLE
For n=4; Sum_{d|4} tau(d)/pod(d) = tau(1)/pod(1) + tau(2)/pod(2) + tau(4)/pod(4) = 1/1 + 2/2 + 3/8 = 19/8; a(4) = 8.
MATHEMATICA
Array[Denominator@ DivisorSum[#, DivisorSigma[0, #]/Apply[Times, Divisors@ #] &] &, 51] (* Michael De Vlieger, Jan 27 2019 *)
PROG
(Magma) [Denominator(&+[NumberOfDivisors(d) / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = denominator(sumdiv(n, d, numdiv(d)/vecprod(divisors(d)))); \\ Michel Marcus, Jan 26 2019
CROSSREFS
Cf. A000005, A007955, A323706 (numerator).
Sequence in context: A375596 A342934 A256616 * A291186 A347942 A058055
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Jan 26 2019
STATUS
approved