login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator of Sum_{d|n} tau(d)/pod(d) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).
1

%I #11 Sep 08 2022 08:46:23

%S 1,1,3,8,5,9,7,16,9,25,11,32,13,49,225,1024,17,972,19,4000,441,121,23,

%T 41472,125,169,729,10976,29,101250,31,16384,1089,289,1225,1119744,37,

%U 361,1521,320000,41,388962,43,42592,30375,529,47,127401984,343,62500,2601

%N a(n) = denominator of Sum_{d|n} tau(d)/pod(d) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

%C Sum_{d|n} tau(d)/pod(d) > 1 for all n > 1.

%F a(n) = 1 for n = 1, 2, ... (no other n <= 5*10^6).

%F a(p) = p for prime p > 2.

%e For n=4; Sum_{d|4} tau(d)/pod(d) = tau(1)/pod(1) + tau(2)/pod(2) + tau(4)/pod(4) = 1/1 + 2/2 + 3/8 = 19/8; a(4) = 8.

%t Array[Denominator@ DivisorSum[#, DivisorSigma[0, #]/Apply[Times, Divisors@ #] &] &, 51] (* _Michael De Vlieger_, Jan 27 2019 *)

%o (Magma) [Denominator(&+[NumberOfDivisors(d) / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..100]]

%o (PARI) a(n) = denominator(sumdiv(n, d, numdiv(d)/vecprod(divisors(d)))); \\ _Michel Marcus_, Jan 26 2019

%Y Cf. A000005, A007955, A323706 (numerator).

%K nonn,frac

%O 1,3

%A _Jaroslav Krizek_, Jan 26 2019