login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x,q) = exp( Integral A(x,q)*A(q*x,q) dx ).
2

%I #14 Oct 27 2018 06:19:32

%S 1,1,2,1,6,6,2,1,24,36,22,14,6,2,1,120,240,210,160,104,56,32,14,6,2,1,

%T 720,1800,2040,1830,1448,992,674,408,232,128,68,32,14,6,2,1,5040,

%U 15120,21000,21840,19824,15834,12144,8758,5904,3860,2442,1482,870,492,260,142,68,32,14,6,2,1

%N E.g.f. satisfies: A(x,q) = exp( Integral A(x,q)*A(q*x,q) dx ).

%H Paul D. Hanna, <a href="/A232433/b232433.txt">Table of n, a(n) for n = 0..9919; rows 0..39 in flattened triangle.</a>

%H Miguel A. Mendez, <a href="https://arxiv.org/abs/1610.03602">Combinatorial differential operators in: Faà di Bruno formula, enumeration of ballot paths, enriched rooted trees and increasing rooted trees</a>, arXiv:1610.03602 [math.CO], 2016.

%F E.g.f. satisfies: d/dx A(x,q) = A(x,q)^2 * A(q*x,q).

%F Row sums equal the odd double factorials.

%F Limit of reversed rows yield A232434.

%e E.g.f.: A(x,q) = 1 + (1)*x + (2 + q)*x^2/2! + (6 + 6*q + 2*q^2 + q^3)*x^3/3!

%e + (24 + 36*q + 22*q^2 + 14*q^3 + 6*q^4 + 2*q^5 + q^6)*x^4/4!

%e + (120 + 240*q + 210*q^2 + 160*q^3 + 104*q^4 + 56*q^5 + 32*q^6 + 14*q^7 + 6*q^8 + 2*q^9 + q^10)*x^5/5! +...

%e The triangle of coefficients T(n,k) of x^n*q^k, for n>=0, k=0..n*(n-1)/2, in e.g.f. A(x,q) begins:

%e [1];

%e [1];

%e [2, 1];

%e [6, 6, 2, 1];

%e [24, 36, 22, 14, 6, 2, 1];

%e [120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];

%e [720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1];

%e [5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1];

%e [40320, 141120, 231840, 275520, 280056, 251496, 212112, 170424, 129716, 95248, 67632, 46616, 31280, 20576, 13142, 8232, 5004, 2954, 1706, 966, 524, 276, 142, 68, 32, 14, 6, 2, 1]; ...

%e The limit of the reversed rows (A232434) begins:

%e [1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, ...].

%t nmax = 8; A[_, _] = 0; Do[A[x_, q_] = Exp[Integrate[A[x, q] A[q x, q], x]] + O[x]^n // Normal // Simplify, {n, nmax}];

%t CoefficientList[#, q]& /@ (CoefficientList[A[x, q], x] Range[0, nmax-1]!) // Flatten (* _Jean-François Alcover_, Oct 27 2018 *)

%o (PARI) {T(n,k)=local(A=1+x);for(i=1,n,A=exp(intformal(A*subst(A,x,x*y +x*O(x^n)),x)));n!*polcoeff(polcoeff(A,n,x),k,y)}

%o for(n=0,12,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))

%Y Cf. A232434, A126470, A001286, A075183.

%K nonn,tabf

%O 0,3

%A _Paul D. Hanna_, Nov 23 2013