The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056023 Unique triangle such that (1) every positive integer occurs exactly once; (2) row n consists of n consecutive numbers; (3) odd-numbered rows are decreasing; (4) even-numbered rows are increasing; and (5) column 1 is increasing. 9
 1, 2, 3, 6, 5, 4, 7, 8, 9, 10, 15, 14, 13, 12, 11, 16, 17, 18, 19, 20, 21, 28, 27, 26, 25, 24, 23, 22, 29, 30, 31, 32, 33, 34, 35, 36, 45, 44, 43, 42, 41, 40, 39, 38, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Self-inverse permutation of the natural numbers. T(2*n-1,1) = A000217(2*n-1) = T(2*n,1) - 1; T(2*n,4*n) = A000217(2*n) = T(2*n+1,4*n+1) - 1. - Reinhard Zumkeller, Apr 25 2004 Mirror image of triangle in A056011. - Philippe Deléham, Apr 04 2009 From Clark Kimberling, Feb 03 2011: (Start) When formatted as a rectangle R, for m > 1, the numbers n-1 and n+1 are neighbors (row, column, or diagonal) of R. R(n,k) = n + (k+n-2)(k+n-1)/2 if n+k is odd; R(n,k) = k + (n+k-2)(n+k-1)/2 if n+k is even. Northwest corner:    1,  2,  6,  7, 15, 16, 28    3,  5,  8, 14, 17, 27, 30    4,  9, 13, 18, 26, 31, 43   10, 12, 19, 25, 32, 42, 49   11, 20, 24, 33, 41, 50, 62   (End) a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Dec 24 2012 For generalizations see A218890, A213927. - Boris Putievskiy, Mar 10 2013 LINKS Ivan Neretin, Table of n, a(n) for n = 1..5050 Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012. Eric Weisstein's MathWorld, Pairing functions FORMULA T(n, k) = (n^2 - (n - 2*k)*(-1)^(n mod 2))/2 + n mod 2. - Reinhard Zumkeller, Apr 25 2004 a(n) = ((i + j - 1)*(i + j - 2) + ((-1)^t + 1)*j - ((-1)^t - 1)*i)/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n and t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012 EXAMPLE From Philippe Deléham, Apr 04 2009 (Start) Triangle begins:   1;   2,   3;   6,   5,  4;   7,   8,  9, 10;   15, 14, 13, 12, 11;   ... (End) Enumeration by boustrophedonic ("ox-plowing") diagonal method. - Boris Putievskiy, Dec 24 2012 MATHEMATICA (* As a rectangle: *) r[n_, k_] := n + (k + n - 2) (k + n - 1)/2/; OddQ[n + k]; r[n_, k_] := k + (n + k - 2) (n + k - 1)/2/; EvenQ[n+k]; TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] Table[r[n - k + 1, k], {n, 14}, {k, n, 1, -1}]//Flatten (* Clark Kimberling, Feb 03 2011 *) CROSSREFS Cf. A056011, A218890, A213927. Sequence in context: A130686 A213927 A222241 * A133259 A120067 A089843 Adjacent sequences:  A056020 A056021 A056022 * A056024 A056025 A056026 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Aug 01 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 00:48 EDT 2020. Contains 337333 sequences. (Running on oeis4.)