login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218890
T(n,k) = ((n + k - 1)*(n + k - 2) - (-1 + (-1)^floor((n + k)/2))*n + (1 +(-1)^floor((n + k)/2))*k)/2; n , k > 0, read by antidiagonals.
4
1, 2, 3, 6, 5, 4, 10, 9, 8, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 28, 27, 26, 25, 24, 23, 22, 36, 35, 34, 33, 32, 31, 30, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 78
OFFSET
1,2
COMMENTS
Self-inverse permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
In general, let m be natural number. Natural numbers placed in table T(n,k) by antidiagonals. The order of placement - at the beginning m antidiagonals downwards, next m antidiagonals upwards and so on. T(n,k) read by antidiagonals downwards.
For m = 1 the result is A056011. This sequence is result for m = 2.
A056023 is result for m = 1 and the changed order of placement - at the beginning m antidiagonals upwards, next m antidiagonals downwards and so on.
FORMULA
For the general case.
As a table
T(n,k) = ((n + k - 1)*(n + k - 2) - (-1 + (-1)^floor((n + k + m - 2)/m))*n + (1 +(-1)^floor((n + k + m - 2)/m))*k)/2.
As linear sequence
a(n) = ((z - 1)*(z - 2) - (-1 + (-1)^floor((z + m - 2)/m))*i + (1 + (-1)^floor((z + m - 2)/m))*j)/2, where i = n - t*(t + 1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1 + sqrt(8*n - 7))/2), z = i + j.
If we change the order of placement - m antidiagonals upwards, m antidiagonals downwards and so on.
As a table
T(n,k) = ((n + k - 1)*(n + k - 2) - (-1 + (-1)^(floor((n + k + m - 2)/m) + 1))*n + (1 + (-1)^(floor((n + k + m - 2)/m) + 1))*k)/2.
As linear sequence
a(n) = ((z - 1)*(z - 2) - (-1 + (-1)^(floor((z + m - 2)/m) + 1))*i + (1 + (-1)^(floor((z + m - 2)/m) + 1))*j)/2, where i = n - t*(t + 1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1 + sqrt(8*n - 7))/2), z = i + j.
For this sequence.
As a table
T(n,k) = ((n + k - 1)*(n + k - 2) - (-1 +(-1)^floor((n + k)/2))*n + (1 + (-1)^floor((n + k)/2))*k)/2.
As linear sequence
a(n) = ((z - 1)*(z - 2) - (-1 + (-1)^floor(z/2))*i + (1 + (-1)^floor(z/2))*j)/2, where i = n - t*(t + 1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1 + sqrt(8*n - 7))/2), z = i + j.
EXAMPLE
The start of the sequence as table. The direction of the placement denotes by ">" and "v".
v...v v...v
..1...2...6..10..11..16..28..36...
..3...5...9..12..17..27..35..38...
> 4...8..13..18..26..34..39..48...
> 7..14..19..25..33..40..49..63...
.15..20..24..32..41..50..62..74...
.21..23..31..42..51..61..73..84...
>22..30..43..52..60..72..85..98...
>29..44..53..59..71..86..99.113...
. . .
The start of the sequence as triangle array read by rows:
1;
2, 3;
6, 5, 4;
10, 9, 8, 7;
11, 12, 13, 14, 15;
16, 17, 18, 19, 20, 21;
28, 27, 26, 25, 24, 23, 22;
36, 35, 34, 33, 32, 31, 30, 29;
...
Row r consists of r consecutive numbers from r*r/2 - r/2 + 1 to r*r/2 + r.
If r congruent to 1 or 2 mod 4 rows are increasing.
If r congruent to 0 or 3 mod 4 rows are decreasing.
MAPLE
T:=(n, k)->((n+k-1)*(n+k-2)-(-1+(-1)^floor((n+k)/2))*n+(1+(-1)^floor((n+k)/2))*k)/2: seq(seq(T(k, n-k), k=1..n-1), n=1..13); # Muniru A Asiru, Dec 13 2018
MATHEMATICA
T[n_, k_] := ((n+k-1)(n+k-2) - (-1 + (-1)^Floor[(n+k)/2])n + (1 + (-1)^Floor[(n+k)/2]) k)/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
z=i+j
result=((z-1)*(z-2)-(-1+(-1)**int(z/2))*i+(1+(-1)**int(z/2))*j)/2
(Maxima) T(n, k) = ((n + k - 1)*(n + k - 2) - (-1 + (-1)^floor((n + k)/2))*n + (1 +(-1)^floor((n + k)/2))*k)/2$
create_list(T(k, n - k), n, 1, 12, k, 1, n - 1); /* Franck Maminirina Ramaharo, Dec 13 2018 */
CROSSREFS
Sequence in context: A378762 A254117 A370629 * A269373 A269374 A137761
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 19 2013
STATUS
approved