login
A242654
1 followed by the union of the terms > 2 in A002387 (or A004080) and A115515.
3
1, 3, 4, 10, 11, 30, 31, 82, 83, 226, 227, 615, 616, 1673, 1674, 4549, 4550, 12366, 12367, 33616, 33617, 91379, 91380, 248396, 248397, 675213, 675214, 1835420, 1835421, 4989190, 4989191, 13562026, 13562027, 36865411, 36865412, 100210580, 100210581, 272400599, 272400600, 740461600, 740461601, 2012783314
OFFSET
1,2
COMMENTS
Ray Chandler, May 29 2014, proposes this as the most likely continuation of A079353.
MATHEMATICA
b[n_] := Ceiling[k /. FindRoot[HarmonicNumber[k] == n, {k, Exp[n]}, WorkingPrecision -> 100]] - 1;
bb = Array[b, 22];
A242654 = Union[bb, bb + 1] // Rest (* Jean-François Alcover, Apr 10 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 29 2014
STATUS
approved