login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303489
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).
5
1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
OFFSET
0,6
FORMULA
A(n,k) = Product_{j=0..n-1} (k*j + n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
6, 8, 10, 12, 14, 16, ...
60, 105, 162, 231, 312, 405, ...
840, 1920, 3640, 6144, 9576, 14080, ...
15120, 45045, 104720, 208845, 375000, 623645, ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=1..5 give A000407, A113551, A303486, A303487, A303488.
Main diagonal gives A061711.
Sequence in context: A171695 A179233 A141600 * A195408 A011491 A189089
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Apr 24 2018
STATUS
approved