login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171695
Expansion of g.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
2
1, 1, 1, -1, 6, -1, -1, 7, 25, -7, 10, -44, 152, -20, -2, -26, 198, -292, 1628, -642, 94, -154, 1000, -1954, 6416, 1586, -1400, 266, 1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378, 1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128
OFFSET
0,5
FORMULA
G.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
-1, 6, -1;
-1, 7, 25, -7;
10, -44, 152, -20, -2;
-26, 198, -292, 1628, -642, 94;
-154, 1000, -1954, 6416, 1586, -1400, 266;
1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378;
1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128;
MATHEMATICA
m= 1;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
Table[CoefficientList[2^(Floor[(n+1)/2])*n!*(1-y)^(n+1)*SeriesCoefficient[ Series[f[t, y, m], {t, 0, 20}], n], y], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Dec 15 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 29 2022
STATUS
approved