|
|
A171693
|
|
Expansion of f(t,y) = Sum_{x>=0} 2^(m+1)*exp(t*x) / (-1 + 2^(m+1) + exp(-2^m*t)) * y^x where m = 0.
|
|
2
|
|
|
1, -1, 14, -1, 4, -16, 504, -16, 4, -34, 372, 2178, 35288, 2178, 372, -34, 496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496, -11056, 154912, -767856, 23350656, 230640288, 770603712, 230640288, 23350656, -767856, 154912, -11056
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
COMMENTS
|
Row sums are: {1, 12, 480, 40320, 5806080, 1277337600,...}.
m=-1 gives MacMahon {1,6,1} A060187.
|
|
LINKS
|
Table of n, a(n) for n=2..37.
|
|
EXAMPLE
|
{1},
{-1, 14, -1},
{4, -16, 504, -16, 4},
{-34, 372, 2178, 35288, 2178, 372, -34},
{496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496},
{-11056, 154912, -767856, 23350656, 230640288, 770603712, 230640288, 23350656, -767856, 154912, -11056}
|
|
MATHEMATICA
|
m = 0;
f[t_, y_] = Sum[2^(m + 1)*Exp[t*x]/(-1 + 2^(m + 1) + Exp[ -2^m* t])*y^x, {x, 0, Infinity}]
a = Table[ CoefficientList[FullSimplify[ExpandAll[((1 - y)^(n + 1)*2^(1 + Floor[(n)/2])/(1 + y))*n!* SeriesCoefficient[ Series[f[t, y], {t, 0, 30}], n]]], y], {n, 1, 11, 2}]
Flatten[a]
|
|
CROSSREFS
|
Cf. A159041, A060187, A171692.
Sequence in context: A040204 A040203 A040205 * A235704 A229199 A040206
Adjacent sequences: A171690 A171691 A171692 * A171694 A171695 A171696
|
|
KEYWORD
|
sign,tabf,uned
|
|
AUTHOR
|
Roger L. Bagula, Dec 15 2009
|
|
STATUS
|
approved
|
|
|
|