login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).
5

%I #4 Apr 24 2018 19:12:24

%S 1,1,1,1,1,6,1,1,8,60,1,1,10,105,840,1,1,12,162,1920,15120,1,1,14,231,

%T 3640,45045,332640,1,1,16,312,6144,104720,1290240,8648640,1,1,18,405,

%U 9576,208845,3674160,43648605,259459200,1,1,20,510,14080,375000,8648640,152152000,1703116800,8821612800

%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F A(n,k) = Product_{j=0..n-1} (k*j + n).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 6, 8, 10, 12, 14, 16, ...

%e 60, 105, 162, 231, 312, 405, ...

%e 840, 1920, 3640, 6144, 9576, 14080, ...

%e 15120, 45045, 104720, 208845, 375000, 623645, ...

%e =========================================================

%e A(1,1) = 1;

%e A(2,1) = 2*3 = 6;

%e A(3,1) = 3*4*5 = 60;

%e A(4,1) = 4*5*6*7 = 840;

%e A(5,1) = 5*6*7*8*9 = 15120, etc.

%e ...

%e A(1,2) = 1;

%e A(2,2) = 2*4 = 8;

%e A(3,2) = 3*5*7 = 105;

%e A(4,2) = 4*6*8*10 = 1920;

%e A(5,2) = 5*7*9*11*13 = 45045, etc.

%e ...

%e A(1,3) = 1;

%e A(2,3) = 2*5 = 10;

%e A(3,3) = 3*6*9 = 162;

%e A(4,3) = 4*7*10*13 = 3640;

%e A(5,3) = 5*8*11*14*17 = 104720, etc.

%e ...

%t Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten

%t Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten

%t Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten

%Y Columns k=1..5 give A000407, A113551, A303486, A303487, A303488.

%Y Main diagonal gives A061711.

%Y Cf. A008279, A131182, A256268, A265609.

%K nonn,tabl

%O 0,6

%A _Ilya Gutkovskiy_, Apr 24 2018