login
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
3
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
OFFSET
0,3
FORMULA
a(n) = Product_{k=0..n-1} (4*k + n).
a(n) = 4^n*Gamma(5*n/4)/Gamma(n/4).
a(n) ~ 5^(5*n/4-1/2)*n^n/exp(n).
EXAMPLE
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
MATHEMATICA
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 24 2018
STATUS
approved