login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051617 a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials). 8
1, 9, 117, 1989, 41769, 1044225, 30282525, 999323325, 36974963025, 1515973484025, 68218806781125, 3342721532275125, 177164241210581625, 10098361749003152625, 616000066689192310125, 40040004334797500158125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row m=5 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..363

FORMULA

a(n) = ((4*n+5)(!^4))/5(!^4).

E.g.f.: 1/(1-4*x)^(9/4).

MATHEMATICA

s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 8, 5!, 4}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)

With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)

PROG

(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ G. C. Greubel, Aug 15 2018

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018

CROSSREFS

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1) (rows m=0..4).

Sequence in context: A113344 A305968 A081629 * A166823 A322928 A087984

Adjacent sequences:  A051614 A051615 A051616 * A051618 A051619 A051620

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 17:46 EDT 2019. Contains 327273 sequences. (Running on oeis4.)