login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051617
a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
9
1, 9, 117, 1989, 41769, 1044225, 30282525, 999323325, 36974963025, 1515973484025, 68218806781125, 3342721532275125, 177164241210581625, 10098361749003152625, 616000066689192310125, 40040004334797500158125
OFFSET
0,2
COMMENTS
Row m=5 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((4*n+5)(!^4))/5(!^4).
E.g.f.: 1/(1-4*x)^(9/4).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 8, 5!, 4}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1) (rows m=0..4).
Sequence in context: A367473 A375722 A081629 * A358387 A166823 A322928
KEYWORD
easy,nonn
STATUS
approved