login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358387
a(n) = 3 * h(n - 1) * h(n) for n >= 1, where h(n) = hypergeom([-n, -n], [1], 2), and a(0) = 1.
3
1, 9, 117, 2457, 60669, 1620729, 45385461, 1311647913, 38774378493, 1165936210281, 35529105456117, 1094291069720121, 34000718751227133, 1064200845293945433, 33516300131277352821, 1061218377653812515657, 33757038339556757274621, 1078167326486278065165513
OFFSET
0,2
FORMULA
a(n) ~ 3*sqrt(2) * (1 + sqrt(2))^(4*n) / (8*Pi*n). - Vaclav Kotesovec, Jan 08 2024
MAPLE
h := n -> hypergeom([-n, -n], [1], 2):
A358387 := n -> ifelse(n = 0, 1, 3*h(n-1)*h(n)):
seq(simplify(A358387(n)), n = 0..17);
PROG
(Python)
def A358387gen() -> Generator:
b, a, n = 1, 3, 1
yield b
while True:
yield 3 * a * b
n += 1
aa = a * (6 * n - 3)
bb = b * (n - 1)
b, a = a, (aa - bb) // n
A358387 = A358387gen()
print([next(A358387) for n in range(18)])
CROSSREFS
Cf. A358388.
Sequence in context: A375722 A081629 A051617 * A166823 A322928 A340236
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 15 2022
STATUS
approved