login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3 * h(n - 1) * h(n) for n >= 1, where h(n) = hypergeom([-n, -n], [1], 2), and a(0) = 1.
3

%I #8 Jan 08 2024 05:24:07

%S 1,9,117,2457,60669,1620729,45385461,1311647913,38774378493,

%T 1165936210281,35529105456117,1094291069720121,34000718751227133,

%U 1064200845293945433,33516300131277352821,1061218377653812515657,33757038339556757274621,1078167326486278065165513

%N a(n) = 3 * h(n - 1) * h(n) for n >= 1, where h(n) = hypergeom([-n, -n], [1], 2), and a(0) = 1.

%F a(n) ~ 3*sqrt(2) * (1 + sqrt(2))^(4*n) / (8*Pi*n). - _Vaclav Kotesovec_, Jan 08 2024

%p h := n -> hypergeom([-n, -n], [1], 2):

%p A358387 := n -> ifelse(n = 0, 1, 3*h(n-1)*h(n)):

%p seq(simplify(A358387(n)), n = 0..17);

%o (Python)

%o def A358387gen() -> Generator:

%o b, a, n = 1, 3, 1

%o yield b

%o while True:

%o yield 3 * a * b

%o n += 1

%o aa = a * (6 * n - 3)

%o bb = b * (n - 1)

%o b, a = a, (aa - bb) // n

%o A358387 = A358387gen()

%o print([next(A358387) for n in range(18)])

%Y Cf. A358388.

%K nonn

%O 0,2

%A _Peter Luschny_, Nov 15 2022