login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285320
If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)); number of iterations of A048675 needed before the result is either zero or nonsquarefree number (A013929).
7
0, 1, 2, 3, 0, 1, 4, 1, 0, 0, 2, 1, 0, 1, 1, 5, 0, 1, 0, 1, 0, 3, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1
OFFSET
0,3
COMMENTS
Conjecture: all terms are well-defined (finite). This implies also the conjecture I have made in A019565.
FORMULA
If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)).
a(A109162(n)) = n.
EXAMPLE
a(38) = 3 because 38 = 2*19 (thus squarefree), A048675(38) = 129 (= 3*43), A048675(129) = 8194 (= 2*17*241) and A048675(8194) = 4503599627370561 (= 3^2 * 37 * 71 * 190483425427), so three steps were needed before nonsquarefree number was reached.
a(74) >= 3 as A048675(74) = 2049 (squarefree), A048675(2049) = 10633823966279326983230456482242756610 (squarefree), A048675(10633823966279326983230456482242756610) = ???
PROG
(PARI)
A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
A285320(n) = if(!n || !moebius(n), 0, 1+A285320(A048675(n)));
(Scheme) (define (A285320 n) (if (or (zero? n) (zero? (A008683 n))) 0 (+ 1 (A285320 (A048675 n)))))
CROSSREFS
A left inverse of A109162.
Cf. also A285319, A285331, A285332.
Sequence in context: A122078 A292783 A320354 * A347710 A340666 A168068
KEYWORD
nonn,hard
AUTHOR
Antti Karttunen, Apr 18 2017
STATUS
approved