OFFSET
1,1
COMMENTS
MATHEMATICA
lim = 4000;
A019565 = Table[Times @@ Prime@Flatten@Position[#, 1] &@
Reverse@IntegerDigits[n, 2], {n, 1, lim}]; (* From Michael De Vlieger in A019565 *)
A048675 = Table[Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]], {n, 1, lim}]; (* From Jean-François Alcover in A048675 *)
Select[Range[lim], A019565[[#]] < # && SquareFreeQ[#] &&
SquareFreeQ[A048675[[#]]] &] (* Robert Price, Apr 07 2019 *)
PROG
(PARI)
allocatemem(2^30);
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
n=0; k=0; while(k <= 60, n=n+1; if(isA285319(n), print1(n, ", "); k=k+1));
(Scheme, with Antti Karttunen's IntSeq-library)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Antti Karttunen, Apr 18 2017
STATUS
approved