login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285319
Squarefree numbers n for which A019565(n) < n and A048675(n) is also squarefree.
9
66, 129, 130, 258, 514, 1034, 1041, 1042, 2049, 2054, 2055, 2066, 2082, 2114, 4098, 4101, 4102, 4130, 4161, 4162, 4226, 4353, 4354, 4610, 5122, 8193, 8198, 8202, 8205, 8206, 8210, 8211, 8229, 8259, 8706, 9218, 9219, 12291
OFFSET
1,1
COMMENTS
Any finite cycle in A019565, if such cycles exist at all, must have at least one member that occurs somewhere in this sequence. Furthermore, such a number n should satisfy A019565(n) < n and that A048675(n)^k is squarefree for all k >= 0.
MATHEMATICA
lim = 4000;
A019565 = Table[Times @@ Prime@Flatten@Position[#, 1] &@
Reverse@IntegerDigits[n, 2], {n, 1, lim}]; (* From Michael De Vlieger in A019565 *)
A048675 = Table[Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]], {n, 1, lim}]; (* From Jean-François Alcover in A048675 *)
Select[Range[lim], A019565[[#]] < # && SquareFreeQ[#] &&
SquareFreeQ[A048675[[#]]] &] (* Robert Price, Apr 07 2019 *)
PROG
(PARI)
allocatemem(2^30);
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
isA285319(n) = (issquarefree(n) & (A019565(n) < n) && issquarefree(A048675(n)));
n=0; k=0; while(k <= 60, n=n+1; if(isA285319(n), print1(n, ", "); k=k+1));
(Scheme, with Antti Karttunen's IntSeq-library)
(define A285319 (MATCHING-POS 1 0 (lambda (n) (and (< (A019565 n) n) (not (zero? (A008683 n))) (not (zero? (A008683 (A048675 n))))))))
CROSSREFS
Subsequence of A285317.
Cf. also A285320 and discussion in A285331 and A285332.
Sequence in context: A350204 A031184 A039443 * A044189 A044570 A118163
KEYWORD
nonn,hard,more
AUTHOR
Antti Karttunen, Apr 18 2017
STATUS
approved