Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 09 2018 10:52:16
%S 1,24,1,2520,120,1,369600,22680,360,1,63063000,4804800,113400,840,1,
%T 11732745024,1072071000,33633600,415800,1680,1,2308743493056,
%U 246387645504,9648639000,168168000,1247400,3024,1,472518347558400,57718587326400,2710264100544,61108047000,672672000,3243240,5040,1
%N Triangle read by rows: T(n,k) = (4*n - 3*k)!/((n-k)!^4*k!).
%C Diagonal of rational function R(x,y,z,w,t) = 1/(1 - (x+y+z+w + t*x*y*z*w)) with respect to x,y,z,w, i.e., T(n,k) = [(xyzw)^n*t^k] R(x,y,z,w,t).
%C Annihilating differential operator: x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1)).
%H Gheorghe Coserea, <a href="/A318105/b318105.txt">Rows n=0..100, flattened</a>
%F Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A125143(n) = P_n(-27), A008977(n) = P_n(0), A082488(n) = P_n(1).
%e A(x;t) = 1 + (24 + t)*x + (2520 + 120*t + t^2)*x^2 + (369600 + 22680*t + 360*t^2 + t^3)*x^3 + ...
%e Triangle starts:
%e n\k [0] [1] [2] [3] [4] [5] [6]
%e [0] 1;
%e [1] 24, 1;
%e [2] 2520, 120, 1;
%e [3] 369600, 22680, 360, 1;
%e [4] 63063000, 4804800, 113400, 840, 1;
%e [5] 11732745024, 1072071000, 33633600, 415800, 1680, 1;
%e [6] 2308743493056, 246387645504, 9648639000, 168168000, 1247400, 3024, 1;
%e [7] ...
%t t[n_,k_] := (4*n - 3*k)!/((n-k)!^4*k!); Table[t[n, k], {n, 0, 10}, {k , 0,n}] // Flatten (* _Amiram Eldar_, Nov 07 2018 *)
%o (PARI) T(n, k) = (4*n-3*k)!/(k!*(n-k)!^4);
%o concat(vector(8, n, vector(n, k, T(n-1, k-1))))
%o /*
%o test:
%o P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
%o diag(expr, N=22, var=variables(expr)) = {
%o my(a = vector(N));
%o for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
%o for (n = 1, N, a[n] = expr;
%o for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
%o return(a);
%o };
%o apply_diffop(p, s) = {
%o s=intformal(s);
%o sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
%o };
%o \\ diagonal property:
%o x='x; y='y; z='z; w='w; t='t;
%o diag(1/(1 - (x+y+z+w + t*x*y*z*w)), 9, [x, y, z, w]) == vector(9, n, P(n-1))
%o \\ annihilating diffop:
%o y = Ser(vector(101, n, P(n-1)), 'x);
%o p = x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1));
%o 0 == apply_diffop(p, y)
%o */
%Y Cf. A008977, A082488, A125143, A318107.
%K nonn,tabl
%O 0,2
%A _Gheorghe Coserea_, Oct 15 2018