Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 29 2019 15:26:00
%S 2,8,1,44,8,2,288,60,24,6,2106,464,228,96,22,16632,3742,2048,1104,440,
%T 91,138996,31392,18246,11328,5940,2184,408,1213056,272592,163896,
%U 111048,68640,33852,11424,1938,10955412,2438208,1493012,1070016,736230,435344,199920,62016,9614,101721744,22369365,13816224,10270752,7602408,5079438,2833152,1209312,346104,49335
%N Triangle read by rows: T(n,k) is the number of rooted maps with n edges whose core comprises k edges, 1 <= k <= n.
%H Gheorghe Coserea, <a href="/A318106/b318106.txt">Rows n=1..202, flattened</a>
%H Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, Michele Soria, <a href="http://algo.inria.fr/flajolet/Publications/BaFlScSo01.pdf">Random maps, coalescing saddles, singularity analysis, and Airy phenomena</a>, Random Structures and Algorithms 19(3-4), 2001.
%F G.f.: A(x;t) = t*h*A000139(t*h), where h=x*A000168(x)^2 (see eqn. (15) in Banderier link).
%e A(x;t) = 2*t*x + (8*t + t^2)*x^2 + (44*t + 8*t^2 + 2*t^3)*x^3 + ...
%e Triangle starts:
%e n\k [1] [2] [3] [4] [5] [6] [7] [8] [9]
%e [1] 2;
%e [2] 8, 1;
%e [3] 44, 8, 2;
%e [4] 288, 60, 24, 6;
%e [5] 2106, 464, 228, 96, 22;
%e [6] 16632, 3742, 2048, 1104, 440, 91;
%e [7] 138996, 31392, 18246, 11328, 5940, 2184, 408;
%e [8] 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938;
%e [9] 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614;
%e [10]...
%t A000139[x_] = 2/(3x) (HypergeometricPFQ[{-2/3, -1/3}, {1/2}, (27/4) x]-1);
%t A000168[x_] = HypergeometricPFQ[{1/2, 1}, {3}, 12 x];
%t h[x_] = x A000168[x]^2;
%t A[x_, t_] := t h[x] A000139[t h[x]];
%t Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[A[x, t] + O[x]^11, x]] // Flatten (* _Jean-François Alcover_, Aug 29 2019 *)
%o (PARI)
%o seq(N) = {
%o my(x='x + O('x^(N+3)), m=(-1 + 18*x + (1-12*x)^(3/2))/(54*x^2),
%o h=x*m^2, c=subst(m, 'x, serreverse(h)));
%o apply(Vecrev, Vec((subst(c, 'x, 't*h) - 1)/'t));
%o };
%o seq(10)
%Y Row sums give A000168 for n>=1.
%Y Main diagonal give A000139(n-1) for n>=1.
%K nonn,tabl
%O 1,1
%A _Gheorghe Coserea_, Sep 22 2018