OFFSET
7,2
COMMENTS
Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
R. K. Guy, personal communication.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 7..1000
B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
FORMULA
a(n) = 2^(2*n-8)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014
EXAMPLE
a(8)=7 because we have 21345678, 13245678, 12435678, 12354678, 12346578, 12345768, and 12345687.
MAPLE
g := proc(n, k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n, 2)) then return(0) else g(n-1, k)+g(n, k-1)-g(n-1, k-n) end if end if end if end proc; seq(g(j+7, j), j=0..30); # Barbara Haas Margolius, May 31 2001
MATHEMATICA
Table[SeriesCoefficient[Product[(1-x^j)/(1-x), {j, 1, n}], {x, 0, n-7}], {n, 7, 25}] (* Vaclav Kotesovec, Mar 16 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014
STATUS
approved