The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001892 Number of permutations of (1,...,n) having n-2 inversions (n>=2). (Formerly M1477 N0583) 6
 1, 2, 5, 15, 49, 169, 602, 2191, 8095, 30239, 113906, 431886, 1646177, 6301715, 24210652, 93299841, 360490592, 1396030396, 5417028610, 21056764914, 81978913225, 319610939055, 1247641114021, 4875896455975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014 REFERENCES F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241. S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356. E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4. R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29. E. Netto, Lehrbuch der Combinatorik, Chapter 4, annotated scanned copy of pages 92-99 only. FORMULA a(n) = 2^(2*n-3)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.288788095... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014 EXAMPLE a(4)=5  because we have 1342, 1423, 2143, 2314, and 3124. MAPLE f := (x, n)->product((1-x^j)/(1-x), j=1..n); seq(coeff(series(f(x, n), x, n+2), x, n-2), n=2..40); MATHEMATICA Table[SeriesCoefficient[Product[(1-x^j)/(1-x), {j, 1, n}], {x, 0, n-2}], {n, 2, 25}] (* Vaclav Kotesovec, Mar 16 2014 *) CROSSREFS Cf. A008302, A048651. Sequence in context: A149937 A149938 A148365 * A176025 A084082 A190270 Adjacent sequences:  A001889 A001890 A001891 * A001893 A001894 A001895 KEYWORD nonn AUTHOR EXTENSIONS More terms, Maple code, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001 Definition clarified by Emeric Deutsch, Aug 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 06:00 EST 2021. Contains 340490 sequences. (Running on oeis4.)