login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190270
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^A001951(n), where A001951(n) = [n*sqrt(2)].
1
1, 1, 2, 5, 15, 49, 169, 605, 2226, 8364, 31956, 123770, 484862, 1917800, 7648470, 30722318, 124180334, 504720369, 2061489396, 8457050387, 34831589583, 143972841512, 597034531410, 2483173470124, 10356092457386, 43298360910159
OFFSET
0,3
COMMENTS
Compare to the g.f. of A190271, G(x), which satisfies:
* G(x) = Sum_{n>=0} x^n*G(x)^A001952(n),
where A001952 is the complementary Beatty sequence to A001951.
FORMULA
G.f. satisfies: A(x) = G(x/A(x)^2) where A(x*G(x)^2) = G(x) is the g.f. of A190271, which in turn satisfies: G(x) = Sum_{n>=0} x^n*G(x)^[n*(2+sqrt(2))].
G.f.: A(x) = sqrt(x/Series_Reversion(x*G(x)^2)) where G(x) is the g.f. of A190271.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 49*x^5 + 169*x^6 +...
The g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)^4 + x^4*A(x)^5 + x^5*A(x)^7 + x^6*A(x)^8 + x^7*A(x)^9 + x^8*A(x)^11 +...+ x^n*A(x)^A001951(n) +...
The g.f. of A190271, G(x) = A(x*G(x)^2), satisfies:
G(x) = 1 + x*G(x)^3 + x^2*G(x)^6 + x^3*G(x)^10 + x^4*G(x)^13 + x^5*G(x)^17 + x^6*G(x)^20 + x^7*G(x)^23 +...+ x^n*G(x)^A001952(n) +...
and begins:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 141*x^4 + 986*x^5 + 7295*x^6 +...
Since A(x) = G(x/A(x)^2), then:
A(x) = 1 + x/A(x)^2 + 4*x^2/A(x)^4 + 22*x^3/A(x)^6 + 141*x^4/A(x)^8 +...
PROG
(PARI) {a(n)=local(A=1+x, t=sqrt(2)-1); for(i=1, n, A=sum(m=0, n, x^m*(A+x*O(x^n))^floor(m+m*t))); polcoeff(A, n)}
CROSSREFS
Cf. A190271, A001951; variant: A186576.
Sequence in context: A001892 A176025 A084082 * A364588 A341342 A149939
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2011
STATUS
approved