login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176025
Series reversion of eta(-x) - 1.
5
1, 1, 2, 5, 15, 49, 169, 603, 2205, 8217, 31095, 119185, 461790, 1805810, 7117865, 28250549, 112806534, 452862663, 1826705940, 7399893522, 30092189864, 122799412699, 502709227763, 2063939448400, 8496355807149, 35061664792175
OFFSET
0,3
COMMENTS
eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).
LINKS
FORMULA
G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently:
x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n).
a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - Vaclav Kotesovec, Nov 11 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...
eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...
eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).
MAPLE
# Using function CompInv from A357588.
CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # Peter Luschny, Oct 05 2022
MATHEMATICA
-InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* Vladimir Reshetnikov, Nov 21 2015 *)
PROG
(PARI) a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))), n)
CROSSREFS
Cf. A010815.
Sequence in context: A149938 A148365 A001892 * A084082 A190270 A364588
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 06 2010
STATUS
approved