The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176025 Series reversion of eta(-x) - 1. 5
 1, 1, 2, 5, 15, 49, 169, 603, 2205, 8217, 31095, 119185, 461790, 1805810, 7117865, 28250549, 112806534, 452862663, 1826705940, 7399893522, 30092189864, 122799412699, 502709227763, 2063939448400, 8496355807149, 35061664792175 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..500 FORMULA G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently: x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n). a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - Vaclav Kotesovec, Nov 11 2017 EXAMPLE G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +... eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +... eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n). MAPLE # Using function CompInv from A357588. CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # Peter Luschny, Oct 05 2022 MATHEMATICA -InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* Vladimir Reshetnikov, Nov 21 2015 *) PROG (PARI) a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))), n) CROSSREFS Cf. A010815. Sequence in context: A149938 A148365 A001892 * A084082 A190270 A364588 Adjacent sequences: A176022 A176023 A176024 * A176026 A176027 A176028 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 06 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:40 EST 2023. Contains 367476 sequences. (Running on oeis4.)