login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176025 Series reversion of eta(-x) - 1. 5
1, 1, 2, 5, 15, 49, 169, 603, 2205, 8217, 31095, 119185, 461790, 1805810, 7117865, 28250549, 112806534, 452862663, 1826705940, 7399893522, 30092189864, 122799412699, 502709227763, 2063939448400, 8496355807149, 35061664792175 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..500

FORMULA

G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently:

x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n).

a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - Vaclav Kotesovec, Nov 11 2017

EXAMPLE

G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...

eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...

eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).

MATHEMATICA

-InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* Vladimir Reshetnikov, Nov 21 2015 *)

PROG

(PARI) a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))), n)

CROSSREFS

Cf. A010815.

Sequence in context: A149938 A148365 A001892 * A084082 A190270 A149939

Adjacent sequences:  A176022 A176023 A176024 * A176026 A176027 A176028

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 06 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 09:38 EST 2020. Contains 338639 sequences. (Running on oeis4.)