login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176022
Triangle T(n, k) = A176013(n, k) + A176013(n, n-k+1), read by rows.
2
-2, 3, 3, -7, -18, -7, 25, 96, 96, 25, -121, -650, -800, -650, -121, 721, 5490, 7500, 7500, 5490, 721, -5041, -53067, -92610, -73500, -92610, -53067, -5041, 40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321, -362881, -6532164, -20345472, -18373824, -10668672, -18373824, -20345472, -6532164, -362881
OFFSET
1,1
COMMENTS
Row sums are: -2, 6, -32, 242, -2342, 27422, -374936, 5841922, -101897354, 1962916022, ...
FORMULA
T(n, k) = ((-1)^n*n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1) + ((-1)^n*n!)/((n-k+1)*(n-k+1)!)*binomial(n-1, n-k)*binomial(n, n-k).
From G. C. Greubel, Feb 15 2021: (Start)
T(n, k) = A176013(n, k) + A176013(n, n-k+1), where A176013(n, k) = (-1)^n*(n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1).
Sum_{k=1..n} T(n, k) = 2*(-1)^n * n! * Hypergeometric2F2(-n, -(n-1); 2, 2; 1). (End)
EXAMPLE
Triangle begins as:
-2;
3, 3;
-7, -18, -7;
25, 96, 96, 25;
-121, -650, -800, -650, -121;
721, 5490, 7500, 7500, 5490, 721;
-5041, -53067, -92610, -73500, -92610, -53067, -5041;
40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321;
MATHEMATICA
(* First program *)
T[n_, m_]:= ((-1)^n*n!/(m*m!))*Binomial[n-1, m-1]*Binomial[n, m-1] + ((-1)^n*n!)/((n-m+1)*(n-m+1)!)*Binomial[n-1, n-m] Binomial[n, n-m];
Table[T[n, m], {m, n}], {n, 10}]//Flatten
(* Second program *)
A176013[n_, k_] := (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
T[n_, k_]:= A176013[n, k] + A176013[n, n-k+1];
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
PROG
(Sage)
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 15 2021
(Magma)
A176013:= func< n, k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
[A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 15 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 06 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 15 2021
STATUS
approved