|
|
A176022
|
|
A symmetrical triangle sequence:t(n,m)= ((-1)^n* Binomial[ -1 + n, -1 + m] Binomial[ n, -1 + m] n!/(m*m!)) + ((-1)^n* Binomial[ -1 + n, -m + n] Binomial[n, -m + n] n!)/((1 - m + n) ( 1 - m + n)!)
|
|
0
|
|
|
-2, 3, 3, -7, -18, -7, 25, 96, 96, 25, -121, -650, -800, -650, -121, 721, 5490, 7500, 7500, 5490, 721, -5041, -53067, -92610, -73500, -92610, -53067, -5041, 40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321, -362881, -6532164
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row sums are:
{-2, 6, -32, 242, -2342, 27422, -374936, 5841922, -101897354, 1962916022,...}.
|
|
LINKS
|
Table of n, a(n) for n=1..38.
|
|
FORMULA
|
t(n,m)= ((-1)^n* Binomial[ -1 + n, -1 + m] Binomial[ n, -1 + m] n!/(m*m!)) + ((-1)^n* Binomial[ -1 + n, -m + n] Binomial[n, -m + n] n!)/((1 - m + n) ( 1 - m + n)!)
|
|
EXAMPLE
|
{-2},
{3, 3},
{-7, -18, -7},
{25, 96, 96, 25},
{-121, -650, -800, -650, -121},
{721, 5490, 7500, 7500, 5490, 721},
{-5041, -53067, -92610, -73500, -92610, -53067, -5041},
{40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321},
{-362881, -6532164, -20345472, -18373824, -10668672, -18373824, -20345472, -6532164, -362881},
{3628801, 81648450, 326640600, 382838400, 186701760, 186701760, 382838400, 326640600, 81648450, 3628801}
|
|
MATHEMATICA
|
L[n_, m_] = ((-1)^n* Binomial[ -1 + n, -1 + m] Binomial[ n, -1 + m] n!/(m*m!)) + ((-1)^n* Binomial[ -1 + n, -m + n] Binomial[n, -m + n] n!)/((1 - m + n) ( 1 - m + n)!);
Table[Table[L[n, m], {m, 1, n}], {n, 1, 10}];
Flatten[%]
|
|
CROSSREFS
|
Cf. A008297
Sequence in context: A136122 A121875 A036251 * A316275 A113031 A127582
Adjacent sequences: A176019 A176020 A176021 * A176023 A176024 A176025
|
|
KEYWORD
|
sign,tabl,uned
|
|
AUTHOR
|
Roger L. Bagula, Apr 06 2010
|
|
STATUS
|
approved
|
|
|
|