OFFSET
1,1
COMMENTS
Row sums are: -2, 6, -32, 242, -2342, 27422, -374936, 5841922, -101897354, 1962916022, ...
LINKS
G. C. Greubel, Rows n = 1..100 of the triangle, flattened
FORMULA
T(n, k) = ((-1)^n*n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1) + ((-1)^n*n!)/((n-k+1)*(n-k+1)!)*binomial(n-1, n-k)*binomial(n, n-k).
From G. C. Greubel, Feb 15 2021: (Start)
T(n, k) = A176013(n, k) + A176013(n, n-k+1), where A176013(n, k) = (-1)^n*(n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1).
Sum_{k=1..n} T(n, k) = 2*(-1)^n * n! * Hypergeometric2F2(-n, -(n-1); 2, 2; 1). (End)
EXAMPLE
Triangle begins as:
-2;
3, 3;
-7, -18, -7;
25, 96, 96, 25;
-121, -650, -800, -650, -121;
721, 5490, 7500, 7500, 5490, 721;
-5041, -53067, -92610, -73500, -92610, -53067, -5041;
40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321;
MATHEMATICA
(* First program *)
T[n_, m_]:= ((-1)^n*n!/(m*m!))*Binomial[n-1, m-1]*Binomial[n, m-1] + ((-1)^n*n!)/((n-m+1)*(n-m+1)!)*Binomial[n-1, n-m] Binomial[n, n-m];
Table[T[n, m], {m, n}], {n, 10}]//Flatten
(* Second program *)
A176013[n_, k_] := (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
PROG
(Sage)
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 15 2021
(Magma)
A176013:= func< n, k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 06 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 15 2021
STATUS
approved