login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176013
Triangle, read by rows, T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
5
-1, 2, 1, -6, -9, -1, 24, 72, 24, 1, -120, -600, -400, -50, -1, 720, 5400, 6000, 1500, 90, 1, -5040, -52920, -88200, -36750, -4410, -147, -1, 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1, -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1
OFFSET
1,2
COMMENTS
Row sums are: -1, 3, -16, 121, -1171, 13711, -187468, 2920961, -50948677, 981458011, ...
FORMULA
T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
T(n, k) = binomial(n+1, k) * A008297(n, k)/(n+1). - G. C. Greubel, Feb 08 2021
EXAMPLE
Triangle begins as:
-1;
2, 1;
-6, -9, -1;
24, 72, 24, 1;
-120, -600, -400, -50, -1;
720, 5400, 6000, 1500, 90, 1;
-5040, -52920, -88200, -36750, -4410, -147, -1;
40320, 564480, 1317120, 823200, 164640, 10976, 224, 1;
-362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1;
MATHEMATICA
T[n_, k_] = (-1)^n*n!/(k*k!)*Binomial[n-1, k-1]*Binomial[n, k-1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Sage) flatten([[(-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
(Magma) [(-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
CROSSREFS
Cf. A008297.
Sequence in context: A021465 A139526 A248927 * A263255 A145663 A276664
KEYWORD
sign,tabl,easy,less
AUTHOR
Roger L. Bagula, Apr 06 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 08 2021
STATUS
approved