login
A176013
Triangle, read by rows, T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
5
-1, 2, 1, -6, -9, -1, 24, 72, 24, 1, -120, -600, -400, -50, -1, 720, 5400, 6000, 1500, 90, 1, -5040, -52920, -88200, -36750, -4410, -147, -1, 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1, -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1
OFFSET
1,2
COMMENTS
Row sums are: -1, 3, -16, 121, -1171, 13711, -187468, 2920961, -50948677, 981458011, ...
FORMULA
T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
T(n, k) = binomial(n+1, k) * A008297(n, k)/(n+1). - G. C. Greubel, Feb 08 2021
EXAMPLE
Triangle begins as:
-1;
2, 1;
-6, -9, -1;
24, 72, 24, 1;
-120, -600, -400, -50, -1;
720, 5400, 6000, 1500, 90, 1;
-5040, -52920, -88200, -36750, -4410, -147, -1;
40320, 564480, 1317120, 823200, 164640, 10976, 224, 1;
-362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1;
MATHEMATICA
T[n_, k_] = (-1)^n*n!/(k*k!)*Binomial[n-1, k-1]*Binomial[n, k-1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Sage) flatten([[(-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
(Magma) [(-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
CROSSREFS
Cf. A008297.
Sequence in context: A021465 A139526 A248927 * A263255 A145663 A276664
KEYWORD
sign,tabl,easy,less
AUTHOR
Roger L. Bagula, Apr 06 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 08 2021
STATUS
approved