login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176010
Positive numbers k such that k^2 == 2 (mod 97).
5
14, 83, 111, 180, 208, 277, 305, 374, 402, 471, 499, 568, 596, 665, 693, 762, 790, 859, 887, 956, 984, 1053, 1081, 1150, 1178, 1247, 1275, 1344, 1372, 1441, 1469, 1538, 1566, 1635, 1663, 1732, 1760, 1829, 1857, 1926, 1954, 2023, 2051, 2120, 2148, 2217
OFFSET
1,1
FORMULA
a(n) = (-97 + 41*(-1)^n + 194*n)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3; a(1)=14, a(2)=83, a(3)=111.
a(n) = a(n-1) + 69 for n even, a(n) = a(n-1) + 28 for n odd, a(1)=14.
G.f.: x*(14+69*x+14*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(14*Pi/97)*Pi/97. - Amiram Eldar, Feb 28 2023
MATHEMATICA
Table[(97-41*(-1)^(n-1)+194*(n-1))/4, {n, 1, 50}] (* Vincenzo Librandi, Jul 13 2012 *)
Select[Range[2500], PowerMod[#, 2, 97]==2&] (* or *) LinearRecurrence[{1, 1, -1}, {14, 83, 111}, 50] (* Harvey P. Dale, Mar 28 2024 *)
PROG
(Magma) [(-97+41*(-1)^n+194*n)/4: n in [1..50]]; // Vincenzo Librandi, Jul 13 2012
CROSSREFS
Sequence in context: A199912 A082971 A374650 * A250562 A166819 A108683
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 06 2010
STATUS
approved