login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers k such that k^2 == 2 (mod 97).
5

%I #24 Mar 28 2024 14:33:46

%S 14,83,111,180,208,277,305,374,402,471,499,568,596,665,693,762,790,

%T 859,887,956,984,1053,1081,1150,1178,1247,1275,1344,1372,1441,1469,

%U 1538,1566,1635,1663,1732,1760,1829,1857,1926,1954,2023,2051,2120,2148,2217

%N Positive numbers k such that k^2 == 2 (mod 97).

%H Vincenzo Librandi, <a href="/A176010/b176010.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = (-97 + 41*(-1)^n + 194*n)/4.

%F a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3; a(1)=14, a(2)=83, a(3)=111.

%F a(n) = a(n-1) + 69 for n even, a(n) = a(n-1) + 28 for n odd, a(1)=14.

%F G.f.: x*(14+69*x+14*x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Aug 24 2011

%F Sum_{n>=1} (-1)^(n+1)/a(n) = cot(14*Pi/97)*Pi/97. - _Amiram Eldar_, Feb 28 2023

%t Table[(97-41*(-1)^(n-1)+194*(n-1))/4,{n,1,50}] (* _Vincenzo Librandi_, Jul 13 2012 *)

%t Select[Range[2500],PowerMod[#,2,97]==2&] (* or *) LinearRecurrence[{1,1,-1},{14,83,111},50] (* _Harvey P. Dale_, Mar 28 2024 *)

%o (Magma) [(-97+41*(-1)^n+194*n)/4: n in [1..50]]; // _Vincenzo Librandi_, Jul 13 2012

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Apr 06 2010