login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199912
Number of -n..n arrays x(0..4) of 5 elements with zero sum, and adjacent elements not equal modulo three (with -1 modulo 3 = 2).
1
14, 82, 256, 804, 1836, 3196, 6064, 10276, 14846, 23154, 34096, 44912, 63114, 85670, 106780, 140664, 181052, 217516, 274204, 339976, 397866, 485814, 585856, 672256, 801254, 945786, 1068792, 1249964, 1450540, 1619260, 1865064, 2134572, 2359126
OFFSET
1,1
COMMENTS
Row 5 of A199909.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-3) -4*a(n-4) -6*a(n-6) +6*a(n-7) +4*a(n-9) -4*a(n-10) -a(n-12) +a(n-13).
Empirical g.f.: 2*x*(7 + 34*x + 87*x^2 + 246*x^3 + 380*x^4 + 332*x^5 + 380*x^6 + 246*x^7 + 87*x^8 + 34*x^9 + 7*x^10) / ((1 - x)^5*(1 + x + x^2)^4). - Colin Barker, May 17 2018
EXAMPLE
Some solutions for n=6:
.-1....4....5....0....2....4...-1...-5....3...-5...-5....0...-6....3....1...-2
..4...-6...-5....2....4...-6...-6....5....2....5....2...-4....4....5....3....6
.-1....4....3....0...-4...-1....5....6...-5....4....3....3...-3....0...-2....1
..3...-3...-2...-2...-5...-2....6...-4....5...-6...-1...-5....5...-2....0...-3
.-5....1...-1....0....3....5...-4...-2...-5....2....1....6....0...-6...-2...-2
CROSSREFS
Cf. A199909.
Sequence in context: A215472 A209942 A215700 * A082971 A374650 A176010
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved