login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199909
T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, and adjacent elements not equal modulo three (with -1 modulo 3 = 2)
12
1, 1, 2, 1, 4, 6, 1, 4, 12, 8, 1, 6, 24, 24, 14, 1, 8, 42, 72, 82, 32, 1, 8, 60, 152, 256, 232, 56, 1, 10, 84, 256, 804, 1312, 654, 100, 1, 12, 114, 448, 1836, 5016, 5206, 2044, 204, 1, 12, 144, 680, 3196, 12872, 24864, 21208, 6096, 388, 1, 14, 180, 952, 6064, 29864, 77874
OFFSET
1,3
COMMENTS
Table starts
...1.....1......1.......1........1.........1.........1..........1..........1
...2.....4......4.......6........8.........8........10.........12.........12
...6....12.....24......42.......60........84.......114........144........180
...8....24.....72.....152......256.......448.......680........952.......1384
..14....82....256.....804.....1836......3196......6064......10276......14846
..32...232...1312....5016....12872.....29864.....62776.....114768.....200520
..56...654...5206...24864....77874....216530....518560....1071202....2114394
.100..2044..21208..139148...547604...1699268...4854740...11588992...24551100
.204..6096..97668..814776..3784512..14546928..47329800..125461824..306360336
.388.18564.422052.4509164.25525476.116482068.436295060.1308549932.3582143596
LINKS
FORMULA
Empirical for rows:
T(1,k)=1
T(2,k)=a(k-1)+a(k-3)-a(k-4)
T(3,k)=2*a(k-1)-a(k-2)+a(k-3)-2*a(k-4)+a(k-5)
T(4,k)=a(k-1)+3*a(k-3)-3*a(k-4)-3*a(k-6)+3*a(k-7)+a(k-9)-a(k-10)
T(5,k)=a(k-1)+4*a(k-3)-4*a(k-4)-6*a(k-6)+6*a(k-7)+4*a(k-9)-4*a(k-10)-a(k-12)+a(k-13)
T(6,k)=2*a(k-1)-a(k-2)+4*a(k-3)-8*a(k-4)+4*a(k-5)-6*a(k-6)+12*a(k-7)-6*a(k-8)+4*a(k-9)-8*a(k-10)+4*a(k-11)-a(k-12)+2*a(k-13)-a(k-14)
T(7,k)=a(k-1)+6*a(k-3)-6*a(k-4)-15*a(k-6)+15*a(k-7)+20*a(k-9)-20*a(k-10)-15*a(k-12)+15*a(k-13)+6*a(k-15)-6*a(k-16)-a(k-18)+a(k-19)
EXAMPLE
Some solutions for n=7 k=6
.-6...-3....4...-6...-3....4....4...-6....4....3....0....3...-6...-6....0....4
.-4....2....2...-4...-4....3...-1...-1....5....2....4....4....4....5...-1...-6
..4...-5....0...-3...-3....1....0....3...-5....4....0...-3...-6...-3...-5....4
.-4....6...-1....5....2...-6...-2....1...-4....0...-2...-1....1....1....0...-1
..6....5....0....4....3....5...-6...-1...-6...-4...-4...-5...-1...-4...-2....0
.-2...-6....1....6....5...-3....2....6....2...-3....6....5....6....1....6...-4
..6....1...-6...-2....0...-4....3...-2....4...-2...-4...-3....2....6....2....3
CROSSREFS
Column 1 is A199697
Row 2 is A063200(n+2)
Sequence in context: A210958 A188925 A063872 * A033884 A208915 A199704
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 11 2011
STATUS
approved