

A063872


Let m be the nth positive integer such that phi(m) is divisible by m  phi(m). Then a(n) = phi(m)/(m  phi(m)).


2



1, 2, 1, 4, 6, 1, 2, 10, 12, 1, 16, 18, 22, 4, 2, 28, 30, 1, 36, 40, 42, 46, 6, 52, 58, 60, 1, 66, 70, 72, 78, 2, 82, 88, 96, 100, 102, 106, 108, 112, 10, 4, 126, 1, 130, 136, 138, 148, 150, 156, 162, 166, 12, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

m is the nth prime power larger than 1; i.e., m = A000961(n+1). Proof: If phi(m) is divisible by mphi(m), then m is divisible by mphi(m). Let k be the product of the distinct prime factors of m. Then phi(m)/m = phi(k)/k, so k/(kphi(k)) = m/(mphi(m)) is an integer. Thus k is divisible by kphi(k) and k is squarefree. Let kphi(k) = d and k/(kphi(k)) = e; note that e>1 and GCD(d,e)=1. Thus d = k  phi(k) = d e  phi(d e) = d e  phi(d) phi(e) so d (e1) = d e  d = phi(d) phi(e) <= phi(d) (e1) and d <= phi(d). But this implies that d=1, so phi(k)=k1 and k is prime. Hence m is a prime power.  Dean Hickerson, Aug 28 2001
For primes, quotient = (p  1) / 1 = p  1; for prime powers, p^a, a > 1: quotient = p^(a  1)(p  1) / p^(a  1) = p  1, so each p  1 values occur infinitely often: a(n) + 1 = root of nth prime power with positive exponent, i.e., A025473(n+1).  [Edited by] Daniel Forgues, May 08 2014
"LCM numeral system": a(n+1) is maximum digit for index n, n >= 0; a(n) is maximum digit for index n, n < 0.  Daniel Forgues, May 03 2014


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
OEIS Wiki, LCM numeral system


FORMULA

a(n) = A025473(n + 1)  1.  Bill McEachen, Sep 11 2021


MATHEMATICA

epd[n_]:=Module[{ep=EulerPhi[n]}, If[Divisible[ep, nep], ep/(nep), Nothing]]; Array[epd, 300, 2] (* Harvey P. Dale, Dec 27 2020 *)


PROG

(PARI) M(n) = ispower(n, , &n); if (isprime(n), n, 1); \\ A014963
apply(x>x1, select(isprime, apply(x>M(x+1), [1..260]))) \\ Michel Marcus, Sep 14 2021


CROSSREFS

Cf. A000010, A051953, A007694, A000961, A054740, A049237, A025473.
Sequence in context: A002987 A210958 A188925 * A199909 A033884 A208915
Adjacent sequences: A063869 A063870 A063871 * A063873 A063874 A063875


KEYWORD

easy,nonn


AUTHOR

Labos Elemer, Aug 27 2001


STATUS

approved



