login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = A176013(n, k) + A176013(n, n-k+1), read by rows.
2

%I #7 Feb 15 2021 02:01:12

%S -2,3,3,-7,-18,-7,25,96,96,25,-121,-650,-800,-650,-121,721,5490,7500,

%T 7500,5490,721,-5041,-53067,-92610,-73500,-92610,-53067,-5041,40321,

%U 564704,1328096,987840,987840,1328096,564704,40321,-362881,-6532164,-20345472,-18373824,-10668672,-18373824,-20345472,-6532164,-362881

%N Triangle T(n, k) = A176013(n, k) + A176013(n, n-k+1), read by rows.

%C Row sums are: -2, 6, -32, 242, -2342, 27422, -374936, 5841922, -101897354, 1962916022, ...

%H G. C. Greubel, <a href="/A176022/b176022.txt">Rows n = 1..100 of the triangle, flattened</a>

%F T(n, k) = ((-1)^n*n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1) + ((-1)^n*n!)/((n-k+1)*(n-k+1)!)*binomial(n-1, n-k)*binomial(n, n-k).

%F From _G. C. Greubel_, Feb 15 2021: (Start)

%F T(n, k) = A176013(n, k) + A176013(n, n-k+1), where A176013(n, k) = (-1)^n*(n!/(k*k!))*binomial(n-1, k-1)*binomial(n, k-1).

%F Sum_{k=1..n} T(n, k) = 2*(-1)^n * n! * Hypergeometric2F2(-n, -(n-1); 2, 2; 1). (End)

%e Triangle begins as:

%e -2;

%e 3, 3;

%e -7, -18, -7;

%e 25, 96, 96, 25;

%e -121, -650, -800, -650, -121;

%e 721, 5490, 7500, 7500, 5490, 721;

%e -5041, -53067, -92610, -73500, -92610, -53067, -5041;

%e 40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321;

%t (* First program *)

%t T[n_, m_]:= ((-1)^n*n!/(m*m!))*Binomial[n-1, m-1]*Binomial[n, m-1] + ((-1)^n*n!)/((n-m+1)*(n-m+1)!)*Binomial[n-1, n-m] Binomial[n, n-m];

%t Table[T[n, m], {m,n}], {n,10}]//Flatten

%t (* Second program *)

%t A176013[n_, k_] := (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];

%t T[n_, k_]:= A176013[n, k] + A176013[n, n-k+1];

%t Table[T[n, k], {n, 10}, {k, n}]//Flatten (* _G. C. Greubel_, Feb 15 2021 *)

%o (Sage)

%o def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)

%o flatten([[A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Feb 15 2021

%o (Magma)

%o A176013:= func< n, k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;

%o [A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // _G. C. Greubel_, Feb 15 2021

%Y Cf. A008297, A176013, A176021.

%K sign,tabl

%O 1,1

%A _Roger L. Bagula_, Apr 06 2010

%E Edited by _G. C. Greubel_, Feb 15 2021