Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 05 2022 08:29:12
%S 1,1,2,5,15,49,169,603,2205,8217,31095,119185,461790,1805810,7117865,
%T 28250549,112806534,452862663,1826705940,7399893522,30092189864,
%U 122799412699,502709227763,2063939448400,8496355807149,35061664792175
%N Series reversion of eta(-x) - 1.
%C eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).
%H Vaclav Kotesovec, <a href="/A176025/b176025.txt">Table of n, a(n) for n = 0..500</a>
%F G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently:
%F x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n).
%F a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - _Vaclav Kotesovec_, Nov 11 2017
%e G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...
%e eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...
%e eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).
%p # Using function CompInv from A357588.
%p CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # _Peter Luschny_, Oct 05 2022
%t -InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* _Vladimir Reshetnikov_, Nov 21 2015 *)
%o (PARI) a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))),n)
%Y Cf. A010815.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Apr 06 2010