login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176027
Binomial transform of A005563.
5
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
OFFSET
0,2
COMMENTS
The numbers appear on the diagonal of a table T(n,k), where the left column contains the elements of A005563, and further columns are recursively T(n,k) = T(n,k-1)+T(n-1,k-1):
....0....-1.....0.....0.....0.....0.....0.....0.....0.....0.
....3.....3.....2.....2.....2.....2.....2.....2.....2.....2.
....8....11....14....16....18....20....22....24....26....28.
...15....23....34....48....64....82...102...124...148...174.
...24....39....62....96...144...208...290...392...516...664.
...35....59....98...160...256...400...608...898..1290..1806.
...48....83...142...240...400...656..1056..1664..2562..3852.
...63...111...194...336...576...976..1632..2688..4352..6914.
...80...143...254...448...784..1360..2336..3968..6656.11008.
...99...179...322...576..1024..1808..3168..5504..9472.16128.
..120...219...398...720..1296..2320..4128..7296.12800.22272.
The second column is A142463, the third A060626, the fourth essentially A035008 and the fifth essentially A016802. Transposing the array gives A005563 and its higher order differences in the individual rows.
FORMULA
G.f.: x*(-3+4*x)/(2*x-1)^3. - R. J. Mathar, Dec 11 2010
a(n) = 2^(n-2)*n*(5+n). - R. J. Mathar, Dec 11 2010
a(n) = A127276(n) - A127276(n+1).
a(n+1)-a(n) = A084266(n+1).
a(n+2) = 16*A058396(n) for n > 0.
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+3) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)
MATHEMATICA
LinearRecurrence[{6, -12, 8}, {0, 3, 14}, 30] (* Harvey P. Dale, Oct 19 2015 *)
PROG
(Magma) [2^(n-2)*n*(5+n) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=n*(n+5)<<(n-2) \\ Charles R Greathouse IV, Sep 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 06 2010
STATUS
approved