login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024453
a(n) = [ (3rd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+2 primes}.
1
3, 14, 48, 124, 279, 543, 981, 1710, 2758, 4329, 6519, 9365, 13088, 18023, 24448, 32237, 42031, 53897, 67765, 84548, 104253, 127677, 155845, 188299, 224778, 266201, 312202, 363845, 426136, 495751, 574268, 660165, 758682, 865898, 984968, 1116797
OFFSET
1,1
LINKS
FORMULA
a(n) = floor(A024448(n)/A007504(n+2)). - Robert Israel, May 01 2019
MAPLE
N:= 100: # to get the first N terms
P:= [seq(ithprime(i), i=1..N+2)]:
E1:= ListTools:-PartialSums(P):
E2:= ListTools:-PartialSums([0, seq(P[i]*E1[i-1], i=2..N+2)]):
E3:= ListTools:-PartialSums([0, seq(P[i]*E2[i-1], i=2..N+2)]):
seq(floor(E3[n]/E1[n]), n=3..N+2); # Robert Israel, May 01 2019
CROSSREFS
Sequence in context: A201349 A006900 A212505 * A176027 A345690 A139263
KEYWORD
nonn
STATUS
approved