OFFSET
0,2
COMMENTS
Number of permutations of [n+3] with three inversions. - Michael Somos, Jun 25 2002
This sequence is related to A241765 by A241765(n) = n*a(n) - Sum_{i=0..n-1} a(i), with A241765(0)=0. For example: A241765(4) = 4*49 - (29+15+6+1) = 145. - Bruno Berselli, Apr 29 2014
For n >= 2, a(n) is also the number of multiplications between two nonzero matrix elements involved in calculating the product of an (n+1) X (n+1) Hessenberg matrix and an (n+1) X (n+1) upper triangular matrix. The formula for n X n matrices is (n+2)(n^2+4n-3)/6 multiplications, n >= 3. - John M. Coffey, Jul 18 2016
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,3).
R. K. Guy, personal communication.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
G.f.: (1+2*x-3*x^2+x^3)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-6-n) = -a(n). - Michael Somos, May 12 2005
(m^3-7*m)/6 for m >= 3 gives the same sequence. - N. J. A. Sloane, Jul 15 2011
a(0)=1, a(1)=6, a(2)=15, a(3)=29, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Mar 07 2012
E.g.f.: (6 + 30*x + 12*x^2 + x^3)*exp(x)/6. - Ilya Gutkovskiy, Jul 09 2016
MATHEMATICA
Table[(n + 3) (n^2 + 6*n + 2)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 6, 15, 29}, 50] (* Harvey P. Dale, Mar 07 2012 *)
Table[Binomial[n, 3] + Binomial[n, 2] - n, {n, 3, 47}] (* or *)
CoefficientList[Series[(1 + 2 x - 3 x^2 + x^3)/(1 - x)^4, {x, 0, 44}], x] (* Michael De Vlieger, Jul 09 2016 *)
PROG
(PARI) a(n)=n+=3; (n^3-7*n)/6 /* Michael Somos, May 12 2005 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved