OFFSET
6,1
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241-242. (Annotated scanned copy)
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = C(n+3, 5) - C(n+2, 3) + C(n, 0).
G.f.: 3*x^6 -x^7*(x-2)*(2*x^4-11*x^3+24*x^2-25*x+11)/(x-1)^6. Simon Plouffe in his 1992 dissertation
a(n) = (n+4)*(n-3)*(n^3-6*n^2+3*n-10)/120, n >= 7. - R. J. Mathar, May 19 2013
MATHEMATICA
Join[{3}, Table[Binomial[n, 5]+Binomial[n, 4]-Binomial[n, 3]+1, {n, 7, 50}]] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 22, 71, 169, 343, 628, 1068}, 50] (* Harvey P. Dale, Aug 30 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved