login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005288
a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.
(Formerly M3090)
4
3, 22, 71, 169, 343, 628, 1068, 1717, 2640, 3914, 5629, 7889, 10813, 14536, 19210, 25005, 32110, 40734, 51107, 63481, 78131, 95356, 115480, 138853, 165852, 196882, 232377, 272801, 318649, 370448, 428758, 494173, 567322
OFFSET
6,1
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241-242. (Annotated scanned copy)
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = C(n+3, 5) - C(n+2, 3) + C(n, 0).
G.f.: 3*x^6 -x^7*(x-2)*(2*x^4-11*x^3+24*x^2-25*x+11)/(x-1)^6. Simon Plouffe in his 1992 dissertation
a(n) = (n+4)*(n-3)*(n^3-6*n^2+3*n-10)/120, n >= 7. - R. J. Mathar, May 19 2013
MATHEMATICA
Join[{3}, Table[Binomial[n, 5]+Binomial[n, 4]-Binomial[n, 3]+1, {n, 7, 50}]] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 22, 71, 169, 343, 628, 1068}, 50] (* Harvey P. Dale, Aug 30 2021 *)
CROSSREFS
Cf. A008302.
Sequence in context: A006532 A274870 A178492 * A143166 A268792 A055550
KEYWORD
easy,nonn
STATUS
approved