login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005287
Number of permutations of [n] with four inversions.
(Formerly M3894)
3
5, 20, 49, 98, 174, 285, 440, 649, 923, 1274, 1715, 2260, 2924, 3723, 4674, 5795, 7105, 8624, 10373, 12374, 14650, 17225, 20124, 23373, 26999, 31030, 35495, 40424, 45848, 51799, 58310, 65415, 73149, 81548, 90649, 100490, 111110, 122549, 134848, 148049
OFFSET
4,1
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,4).
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
R. K. Guy, personal communication.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.
LINKS
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = n*(n+1)*(n^2+n-14)/24.
G.f.: x^4*(-5 + 5*x + x^2 - 3*x^3 + x^4) / (x-1)^5. - Simon Plouffe in his 1992 dissertation
binomial(n,4) + binomial(n,3) - binomial(n,2), n>=5. - Zerinvary Lajos, Jul 23 2006
EXAMPLE
[2, 4, 3, 1], [3, 2, 4, 1], [3, 4, 1, 2], [4, 1, 3, 2], [4, 2, 1, 3] have 4 inversions.
MAPLE
[seq(binomial(n, 4)+binomial(n, 3)-binomial(n, 2), n=5..43)]; # Zerinvary Lajos, Jul 23 2006
MATHEMATICA
CoefficientList[Series[(z^4 - 3*z^3 + z^2 + 5*z - 5)/(z - 1)^5, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {5, 20, 49, 98, 174}, 40] (* Harvey P. Dale, Aug 25 2016 *)
PROG
(PARI) a(n)=if(n<4, 0, n*(n+1)*(n^2+n-14)/24)
(Magma) [n*(n+1)*(n^2+n-14)/24: n in [4..50]]; // Vincenzo Librandi, Jul 17 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved