The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005287 Number of permutations of [n] with four inversions. (Formerly M3894) 3
 5, 20, 49, 98, 174, 285, 440, 649, 923, 1274, 1715, 2260, 2924, 3723, 4674, 5795, 7105, 8624, 10373, 12374, 14650, 17225, 20124, 23373, 26999, 31030, 35495, 40424, 45848, 51799, 58310, 65415, 73149, 81548, 90649, 100490, 111110, 122549, 134848, 148049 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,4). F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241. R. K. Guy, personal communication. E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49. LINKS Vincenzo Librandi, Table of n, a(n) for n = 4..10000 R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = n*(n+1)*(n^2+n-14)/24. G.f.: x^4*(-5 + 5*x + x^2 - 3*x^3 + x^4) / (x-1)^5. - Simon Plouffe in his 1992 dissertation binomial(n,4) + binomial(n,3) - binomial(n,2), n>=5. - Zerinvary Lajos, Jul 23 2006 EXAMPLE [2, 4, 3, 1], [3, 2, 4, 1], [3, 4, 1, 2], [4, 1, 3, 2], [4, 2, 1, 3] have 4 inversions. MAPLE [seq(binomial(n, 4)+binomial(n, 3)-binomial(n, 2), n=5..43)]; # Zerinvary Lajos, Jul 23 2006 MATHEMATICA CoefficientList[Series[(z^4 - 3*z^3 + z^2 + 5*z - 5)/(z - 1)^5, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *) LinearRecurrence[{5, -10, 10, -5, 1}, {5, 20, 49, 98, 174}, 40] (* Harvey P. Dale, Aug 25 2016 *) PROG (PARI) a(n)=if(n<4, 0, n*(n+1)*(n^2+n-14)/24) (Magma) [n*(n+1)*(n^2+n-14)/24: n in [4..50]]; // Vincenzo Librandi, Jul 17 2011 CROSSREFS Cf. A008302, A005286, A005288. Sequence in context: A168011 A160749 A147002 * A147488 A297569 A190094 Adjacent sequences: A005284 A005285 A005286 * A005288 A005289 A005290 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 10:23 EST 2022. Contains 358586 sequences. (Running on oeis4.)