The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297569 Number of nonisomorphic proper colorings of partition star graph using five colors. 7
 5, 20, 50, 80, 100, 320, 320, 175, 800, 680, 1280, 1280, 280, 1600, 2720, 3200, 5120, 5120, 5120, 420, 2800, 6800, 4080, 6400, 20480, 10400, 12800, 20480, 20480, 20480, 600, 4480, 13600, 16320, 11200, 51200, 43520, 41600, 25600, 81920, 81920, 51200, 81920, 81920, 81920, 825, 6720, 23800, 40800, 19380, 17920, 102400, 174080, 104000, 166400, 44800, 204800, 174080, 327680, 164480, 102400, 327680, 327680, 204800, 327680, 327680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A partition star graph consists of a multiset of paths with lengths given by the elements of the partition attached to a distinguished root node. The ordering of the partitions is by traversing antichains in Young's lattice bottom to top, left to right. Isomorphism refers to the automorphisms of the star graph corresponding to the partition. LINKS Table of n, a(n) for n=0..65. Marko Riedel et al., Orbital chromatic polynomials FORMULA For a partition lambda we have the OCP: k Product_{p^v in lambda} C((k-1)^p+v-1, v). Here we have k=5. EXAMPLE Rows are: 5; 20, 50, 80; 100, 320, 320; 175, 800, 680, 1280, 1280; 280, 1600, 2720, 3200, 5120, 5120, 5120; MAPLE b:= (n, i)-> `if`(n=0, [5], `if`(i<1, [], [seq(map(x-> x* binomial(4^i+j-1, j), b(n-i*j, i-1))[], j=0..n/i)])): T:= n-> b(n\$2)[]: seq(T(n), n=0..10); # Alois P. Heinz, Jan 14 2018 MATHEMATICA b[n_, i_] := If[n == 0, {5}, If[i<1, {}, Table[Map[Function[x, x*Binomial[ 4^i + j - 1, j]], b[n - i*j, i - 1]], {j, 0, n/i}]] // Flatten]; T[n_] := b[n, n]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 17 2018, after Alois P. Heinz *) CROSSREFS Cf. A297567, A297568, A297570. Row sums give 5*A144068. Row lengths give A000041. Sequence in context: A147002 A005287 A147488 * A190094 A134481 A358632 Adjacent sequences: A297566 A297567 A297568 * A297570 A297571 A297572 KEYWORD nonn,tabf AUTHOR Marko Riedel, Dec 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:58 EST 2023. Contains 367680 sequences. (Running on oeis4.)